如何给Golang的gc减负

ieasy_tm · · 1830 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

这篇文章想聊聊如何给gc减负的问题,也即我们在写业务的时候,有时候需要考虑下gc老人家的感受,但又不能丧失代码的可读性,有些情况下代码需不需要优化,优化后能取得多大的性能提升,其中的平衡需要把握。不然很容易出现:脱裤子放屁,多此一举。

  1. 字符串拼接,demo代码:
package main

import (
    "bytes"
)

func f1(l int) {
    var s, s1 string = ``, `hello world`
    for i := 0; i < l; i++ {
        s = s + s1
    }
}
func f2(l int) {
    buf := bytes.NewBuffer([]byte{})
    var s1 string = `hello world`
    for i := 0; i < l; i++ {
        buf.WriteString(s1)
    }
}
func f3(l int) {
    var s []string
    var s1 string = `hello world`
    for i := 0; i < l; i++ {
        s = append(s, s1)
    }
    strings.Join(s, ``)
}

测试代码:

package main

import (
    "testing"
)
func Benchmark_F1(b *testing.B) {
    for i := 0; i < b.N; i++ {
        f1(100000)
    }
}

func Benchmark_F2(b *testing.B) {
    for i := 0; i < b.N; i++ {
        f2(100000)
    }
}

func Benchmark_F3(b *testing.B) {
    for i := 0; i < b.N; i++ {
        f3(100000)
    }
}

go test -bench=".*" -test.benchmem -count=1 输出的结果是:

Benchmark_F1-4             1    9334113815 ns/op    55401130720 B/op      100056 allocs/op
Benchmark_F2-4          1000       2318146 ns/op     2891600 B/op         18 allocs/op
Benchmark_F3-4           100      14660804 ns/op    11459184 B/op         32 allocs/op
PASS
ok      _/Users/taomin/pprof/string 13.394s

从bench的结果来看,10W个字符串的拼接,+的最差,bytes.NewBuffe最好。内存和时间上的差距大概在3个数量级左右。这种字符串拼接的优化,除非你的场景确实存在大量字符串拼接,不然不要使用什么bytes或者strings.join,直接+拼接起来就好了。

  1. 临时对象池
    对象池将对象存放到池里,通过复用之前的对象,从而减少分配对象的个数。每次GC,runtime会调用poolCleanup函数来将Pool清空,这样原本Pool中储存的对象会被GC全部回收。这是Pool的一个特性,这个特性会导致:有状态的对象不能储存在Pool中,Pool不能用作连接池;官方文档说明如下:
A Pool is a set of temporary objects that may be individually saved and retrieved.

Any item stored in the Pool may be removed automatically at any time without notification. If the Pool holds the only reference when this happens, the item might be deallocated.

A Pool is safe for use by multiple goroutines simultaneously.

Pool's purpose is to cache allocated but unused items for later reuse, relieving pressure on the garbage collector. That is, it makes it easy to build efficient, thread-safe free lists. However, it is not suitable for all free lists.

An appropriate use of a Pool is to manage a group of temporary items silently shared among and potentially reused by concurrent independent clients of a package. Pool provides a way to amortize allocation overhead across many clients.

An example of good use of a Pool is in the fmt package, which maintains a dynamically-sized store of temporary output buffers. The store scales under load (when many goroutines are actively printing) and shrinks when quiescent.

On the other hand, a free list maintained as part of a short-lived object is not a suitable use for a Pool, since the overhead does not amortize well in that scenario. It is more efficient to have such objects implement their own free list.

A Pool must not be copied after first use.

type Pool struct {

        // New optionally specifies a function to generate
        // a value when Get would otherwise return nil.
        // It may not be changed concurrently with calls to Get.
        New func() interface{}
        // contains filtered or unexported fields
}

在网上有哥们写的Pool的例子,觉得很能说明问题,这里用他的代码作为例子来说明:

package main

import (
    "fmt"
    "io"
    "net/http"
    "sync"
)

// 并发过程使用了多少次 []byte
var mu sync.Mutex
var holder map[string]bool = make(map[string]bool)

// 临时对象池
var p = sync.Pool{
    New: func() interface{} {
        buffer := make([]byte, 1024)
        return &buffer
    },
}

func readContent(wg *sync.WaitGroup) {
    defer wg.Done()
    resp, err := http.Get("http://my.oschina.net/xinxingegeya/home")
    if err != nil {
        fmt.Println(err)
    }
    defer resp.Body.Close()
    byteSlice := p.Get().(*[]byte) //类型断言
    key := fmt.Sprintf("%p", byteSlice)
    mu.Lock()
    _, ok := holder[key]
    if !ok {
        holder[key] = true
    }
    mu.Unlock()
    _, err = io.ReadFull(resp.Body, *byteSlice)
    if err != nil {
        fmt.Println(err)
    }
    p.Put(byteSlice)
}

func main() {
    var wg sync.WaitGroup
    for i := 0; i < 10; i++ {
        wg.Add(1)
        go readContent(&wg)
    }
    wg.Wait()
    for key, val := range holder {
        fmt.Println("Key:", key, "Value:", val)
    }
}

Pool要慎用哦,因为它的脾气不太好。

  1. string转字节数组
    string类型的变量里面的值会被复制到字节数组中,雨虹学堂上之前一种优化思路,通过unsafe包的指针操作,直接对string的地址进行操作,这样避免了内存复制操作,但个人感觉这个优化有点过了,这会让代码失去可读性,例如:
s := "hello world!"
b := []byte(s)

被改成了:

 func str2bytes(s string) []byte {
    x := (*[2]uintptr)(unsafe.Pointer(&s))
    h := [3]uintptr{x[0], x[1], x[1]}
    return *(*[]byte)(unsafe.Pointer(&h))
}

下面的代码如果不好好研究下,完全看不懂在搞神马。以上这些是自己能想到的优化点,你有什么好的优化方案和经历,欢迎分享。。。
end ~


有疑问加站长微信联系(非本文作者)

本文来自:简书

感谢作者:ieasy_tm

查看原文:如何给Golang的gc减负

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

1830 次点击  
加入收藏 微博
1 回复  |  直到 2017-09-11 02:21:56
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传