Goroutine调度实例简要分析

bigwhite · · 5347 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

前两天一位网友在微博私信我这样一个问题:

抱歉打扰您咨询您一个关于Go的问题:对于goroutine的概念我是明了的,但很疑惑goroutine的调度问题, 根据《Go语言编程》一书:“当一个任务正在执行时,外部没有办法终止它。要进行任务切换,只能通过由该任务自身调用yield()来主动出让CPU使用权。” 那么,假设我的goroutine是一个死循环的话,是否其它goroutine就没有执行的机会呢?我测试的结果是这些goroutine会轮流执行。那么除了syscall时会主动出让cpu时间外,我的死循环goroutine 之间是怎么做到切换的呢?

我在第一时间做了回复。不过由于并不了解具体的细节,我在答复中做了一个假定,即假定这位网友的死循环带中没有调用任何可以交出执行权的代码。事后,这位网友在他的回复后道出了死循环goroutine切换的真实原因:他在死循环中调用了fmt.Println

事后总觉得应该针对这个问题写点什么? 于是就构思了这样一篇文章,旨在循着这位网友的思路通过一些例子来step by step演示如何分析go schedule。如果您对Goroutine的调度完全不了解,那么请先读一读这篇前导文 《也谈goroutine调度器》

一、为何在deadloop的参与下,多个goroutine依旧会轮流执行

我们先来看case1,我们顺着那位网友的思路来构造第一个例子,并回答:“为何在deadloop的参与下,多个goroutine依旧会轮流执行?”这个问题。下面是case1的源码:

//github.com/bigwhite/experiments/go-sched-examples/case1.go
package main

import (
    "fmt"
    "time"
)

func deadloop() {
    for {
    }
}

func main() {
    go deadloop()
    for {
        time.Sleep(time.Second * 1)
        fmt.Println("I got scheduled!")
    }
}

在case1.go中,我们启动了两个goroutine,一个是main goroutine,一个是deadloop goroutine。deadloop goroutine顾名思义,其逻辑是一个死循环;而main goroutine为了展示方便,也用了一个“死循环”,并每隔一秒钟打印一条信息。在我的macbook air上运行这个例子(我的机器是两核四线程的,runtime的NumCPU函数返回4):

$go run case1.go
I got scheduled!
I got scheduled!
I got scheduled!
... ...

从运行结果输出的日志来看,尽管有deadloop goroutine的存在,main goroutine仍然得到了调度。其根本原因在于机器是多核多线程的(硬件线程哦,不是操作系统线程)。Go从1.5版本之后将默认的P的数量改为 = CPU core的数量(实际上还乘以了每个core上硬线程数量),这样case1在启动时创建了不止一个P,我们用一幅图来解释一下:

img{512x368}

我们假设deadloop Goroutine被调度与P1上,P1在M1(对应一个os kernel thread)上运行;而main goroutine被调度到P2上,P2在M2上运行,M2对应另外一个os kernel thread,而os kernel threads在操作系统调度层面被调度到物理的CPU core上运行,而我们有多个core,即便deadloop占满一个core,我们还可以在另外一个cpu core上运行P2上的main goroutine,这也是main goroutine得到调度的原因。

Tips: 在mac os上查看你的硬件cpu core数量和硬件线程总数量:

$sysctl -n machdep.cpu.core_count
2
$sysctl -n machdep.cpu.thread_count
4

二、如何让deadloop goroutine以外的goroutine无法得到调度?

如果我们非要deadloop goroutine以外的goroutine无法得到调度,我们该如何做呢?一种思路:让Go runtime不要启动那么多P,让所有用户级的goroutines在一个P上被调度。

三种办法:

  • 在main函数的最开头处调用runtime.GOMAXPROCS(1);
  • 设置环境变量export GOMAXPROCS=1后再运行程序
  • 找一个单核单线程的机器^0^(现在这样的机器太难找了,只能使用云服务器实现)

我们以第一种方法为例:

//github.com/bigwhite/experiments/go-sched-examples/case2.go
package main

import (
    "fmt"
    "runtime"
    "time"
)

func deadloop() {
    for {
    }
}

func main() {
    runtime.GOMAXPROCS(1)
    go deadloop()
    for {
        time.Sleep(time.Second * 1)
        fmt.Println("I got scheduled!")
    }
}

运行这个程序后,你会发现main goroutine的”I got scheduled”字样再也无法输出了。这里的调度原理可以用下面图示说明:

img{512x368}

deadloop goroutine在P1上被调度,由于deadloop内部逻辑没有给调度器任何抢占的机会,比如:进入runtime.morestack_noctxt。于是即便是sysmon这样的监控goroutine,也仅仅是能给deadloop goroutine的抢占标志位设为true而已。由于deadloop内部没有任何进入调度器代码的机会,Goroutine重新调度始终无法发生。main goroutine只能躺在P1的local queue中徘徊着。

三、反转:如何在GOMAXPROCS=1的情况下,让main goroutine得到调度呢?

我们做个反转:如何在GOMAXPROCS=1的情况下,让main goroutine得到调度呢?听说在Go中 “有函数调用,就有了进入调度器代码的机会”,我们来试验一下是否属实。我们在deadloop goroutine的for-loop逻辑中加上一个函数调用:

// github.com/bigwhite/experiments/go-sched-examples/case3.go
package main

import (
    "fmt"
    "runtime"
    "time"
)

func add(a, b int) int {
    return a + b
}

func deadloop() {
    for {
        add(3, 5)
    }
}

func main() {
    runtime.GOMAXPROCS(1)
    go deadloop()
    for {
        time.Sleep(time.Second * 1)
        fmt.Println("I got scheduled!")
    }
}

我们在deadloop goroutine的for loop中加入了一个add函数调用。我们来运行一下这个程序,看是否能达成我们的目的:

$ go run case3.go

“I got scheduled!”字样依旧没有出现在我们眼前!也就是说main goroutine没有得到调度!为什么呢?其实所谓的“有函数调用,就有了进入调度器代码的机会”,实际上是go compiler在函数的入口处插入了一个runtime的函数调用:runtime.morestack_noctxt。这个函数会检查是否扩容连续栈,并进入抢占调度的逻辑中。一旦所在goroutine被置为可被抢占的,那么抢占调度代码就会剥夺该Goroutine的执行权,将其让给其他goroutine。但是上面代码为什么没有实现这一点呢?我们需要在汇编层次看看go compiler生成的代码是什么样子的。

查看Go程序的汇编代码有许多种方法:

  • 使用objdump工具:objdump -S go-binary
  • 使用gdb disassemble
  • 构建go程序同时生成汇编代码文件:go build -gcflags ‘-S’ xx.go > xx.s 2>&1
  • 将Go代码编译成汇编代码:go tool compile -S xx.go > xx.s
  • 使用go tool工具反编译Go程序:go tool objdump -S go-binary > xx.s

我们这里使用最后一种方法:利用go tool objdump反编译(并结合其他输出的汇编形式):

$go build -o case3 case3.go
$go tool objdump -S case3 > case3.s

打开case3.s,搜索main.add,我们居然找不到这个函数的汇编代码,而main.deadloop的定义如下:

TEXT main.deadloop(SB) github.com/bigwhite/experiments/go-sched-examples/case3.go
        for {
  0x1093a10             ebfe                    JMP main.deadloop(SB)

  0x1093a12             cc                      INT $0x3
  0x1093a13             cc                      INT $0x3
  0x1093a14             cc                      INT $0x3
  0x1093a15             cc                      INT $0x3
   ... ...
  0x1093a1f             cc                      INT $0x3

我们看到deadloop中对add的调用也消失了。这显然是go compiler执行生成代码优化的结果,因为add的调用对deadloop的行为结果没有任何影响。我们关闭优化再来试试:

$go build -gcflags '-N -l' -o case3-unoptimized case3.go
$go tool objdump -S case3-unoptimized > case3-unoptimized.s

打开 case3-unoptimized.s查找main.add,这回我们找到了它:

TEXT main.add(SB) github.com/bigwhite/experiments/go-sched-examples/case3.go
func add(a, b int) int {
  0x1093a10             48c744241800000000      MOVQ $0x0, 0x18(SP)
        return a + b
  0x1093a19             488b442408              MOVQ 0x8(SP), AX
  0x1093a1e             4803442410              ADDQ 0x10(SP), AX
  0x1093a23             4889442418              MOVQ AX, 0x18(SP)
  0x1093a28             c3                      RET

  0x1093a29             cc                      INT $0x3
... ...
  0x1093a2f             cc                      INT $0x3

deadloop中也有了对add的显式调用:

TEXT main.deadloop(SB) github.com/bigwhite/experiments/go-sched-examples/case3.go
  ... ...
  0x1093a51             48c7042403000000        MOVQ $0x3, 0(SP)
  0x1093a59             48c744240805000000      MOVQ $0x5, 0x8(SP)
  0x1093a62             e8a9ffffff              CALL main.add(SB)
        for {
  0x1093a67             eb00                    JMP 0x1093a69
  0x1093a69             ebe4                    JMP 0x1093a4f
... ...

不过我们这个程序中的main goroutine依旧得不到调度,因为在main.add代码中,我们没有发现morestack函数的踪迹,也就是说即便调用了add函数,deadloop也没有机会进入到runtime的调度逻辑中去。

不过,为什么Go compiler没有在main.add函数中插入morestack的调用呢?那是因为add函数位于调用树的leaf(叶子)位置,compiler可以确保其不再有新栈帧生成,不会导致栈分裂或超出现有栈边界,于是就不再插入morestack。而位于morestack中的调度器的抢占式检查也就无法得以执行。下面是go build -gcflags ‘-S’方式输出的case3.go的汇编输出:

"".add STEXT nosplit size=19 args=0x18 locals=0x0
     TEXT    "".add(SB), NOSPLIT, $0-24
     FUNCDATA        $0, gclocals·54241e171da8af6ae173d69da0236748(SB)
     FUNCDATA        $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
     MOVQ    "".b+16(SP), AX
     MOVQ    "".a+8(SP), CX
     ADDQ    CX, AX
     MOVQ    AX, "".~r2+24(SP)
    RET

我们看到nosplit字样,这就说明add使用的栈是固定大小,不会再split,且size为24字节。

关于在for loop中的leaf function是否应该插入morestack目前还有一定争议,将来也许会对这样的情况做特殊处理。

既然明白了原理,我们就在deadloop和add之间加入一个dummy函数,见下面case4.go代码:

//github.com/bigwhite/experiments/go-sched-examples/case4.go
package main

import (
    "fmt"
    "runtime"
    "time"
)

//go:noinline
func add(a, b int) int {
    return a + b
}

func dummy() {
    add(3, 5)
}

func deadloop() {
    for {
        dummy()
    }
}

func main() {
    runtime.GOMAXPROCS(1)
    go deadloop()
    for {
        time.Sleep(time.Second * 1)
        fmt.Println("I got scheduled!")
    }
}

执行该代码:

$go run case4.go
I got scheduled!
I got scheduled!
I got scheduled!

Wow! main goroutine果然得到了调度。我们再来看看go compiler为程序生成的汇编代码:

$go build -gcflags '-N -l' -o case4 case4.go
$go tool objdump -S case4 > case4.s

TEXT main.add(SB) github.com/bigwhite/experiments/go-sched-examples/case4.go
func add(a, b int) int {
  0x1093a10             48c744241800000000      MOVQ $0x0, 0x18(SP)
        return a + b
  0x1093a19             488b442408              MOVQ 0x8(SP), AX
  0x1093a1e             4803442410              ADDQ 0x10(SP), AX
  0x1093a23             4889442418              MOVQ AX, 0x18(SP)
  0x1093a28             c3                      RET

  0x1093a29             cc                      INT $0x3
  0x1093a2a             cc                      INT $0x3
... ...

TEXT main.dummy(SB) github.com/bigwhite/experiments/go-sched-examples/case4.s
func dummy() {
  0x1093a30             65488b0c25a0080000      MOVQ GS:0x8a0, CX
  0x1093a39             483b6110                CMPQ 0x10(CX), SP
  0x1093a3d             762e                    JBE 0x1093a6d
  0x1093a3f             4883ec20                SUBQ $0x20, SP
  0x1093a43             48896c2418              MOVQ BP, 0x18(SP)
  0x1093a48             488d6c2418              LEAQ 0x18(SP), BP
        add(3, 5)
  0x1093a4d             48c7042403000000        MOVQ $0x3, 0(SP)
  0x1093a55             48c744240805000000      MOVQ $0x5, 0x8(SP)
  0x1093a5e             e8adffffff              CALL main.add(SB)
}
  0x1093a63             488b6c2418              MOVQ 0x18(SP), BP
  0x1093a68             4883c420                ADDQ $0x20, SP
  0x1093a6c             c3                      RET

  0x1093a6d             e86eacfbff              CALL runtime.morestack_noctxt(SB)
  0x1093a72             ebbc                    JMP main.dummy(SB)

  0x1093a74             cc                      INT $0x3
  0x1093a75             cc                      INT $0x3
  0x1093a76             cc                      INT $0x3
.... ....

我们看到main.add函数依旧是leaf,没有morestack插入;但在新增的dummy函数中我们看到了CALL runtime.morestack_noctxt(SB)的身影。

四、为何runtime.morestack_noctxt(SB)放到了RET后面?

在传统印象中,morestack是放在函数入口处的。但实际编译出来的汇编代码中(见上面函数dummy的汇编),runtime.morestack_noctxt(SB)却放在了RET的后面。解释这个问题,我们最好来看一下另外一种形式的汇编输出(go build -gcflags ‘-S’方式输出的格式):

"".dummy STEXT size=68 args=0x0 locals=0x20
        0x0000 00000 TEXT    "".dummy(SB), $32-0
        0x0000 00000 MOVQ    (TLS), CX
        0x0009 00009 CMPQ    SP, 16(CX)
        0x000d 00013 JLS     61
        0x000f 00015 SUBQ    $32, SP
        0x0013 00019 MOVQ    BP, 24(SP)
        0x0018 00024 LEAQ    24(SP), BP
        ... ...
        0x001d 00029 MOVQ    $3, (SP)
        0x0025 00037 MOVQ    $5, 8(SP)
        0x002e 00046 PCDATA  $0, $0
        0x002e 00046 CALL    "".add(SB)
        0x0033 00051 MOVQ    24(SP), BP
        0x0038 00056 ADDQ    $32, SP
        0x003c 00060 RET
        0x003d 00061 NOP
        0x003d 00061 PCDATA  $0, $-1
        0x003d 00061 CALL    runtime.morestack_noctxt(SB)
        0x0042 00066 JMP     0

我们看到在函数入口处,compiler插入三行汇编:

        0x0000 00000 MOVQ    (TLS), CX  // 将TLS的值(GS:0x8a0)放入CX寄存器
        0x0009 00009 CMPQ    SP, 16(CX)  //比较SP与CX+16的值
        0x000d 00013 JLS     61 // 如果SP > CX + 16,则jump到61这个位置

这种形式输出的是标准Plan9的汇编语法,资料很少(比如JLS跳转指令的含义),注释也是大致猜测的。如果跳转,则进入到 runtime.morestack_noctxt,从 runtime.morestack_noctxt返回后,再次jmp到开头执行。

为什么要这么做呢?按照go team的说法,是为了更好的利用现代CPU的“static branch prediction”,提升执行性能。

五、参考资料

文中的代码可以点击这里下载。


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

微信赞赏:
img{512x368}

© 2017, bigwhite. 版权所有.


有疑问加站长微信联系(非本文作者)

本文来自:Tony Bai

感谢作者:bigwhite

查看原文:Goroutine调度实例简要分析

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

5347 次点击  ∙  2 赞  
加入收藏 微博
被以下专栏收入,发现更多相似内容
2 回复  |  直到 2017-11-28 03:57:40
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传