谷歌的tensorflow虽然提供了go版本,但是官方的说法是:
TensorFlow provides APIs for use in Go programs. These APIs are particularly well-suited to loading models created in Python and executing them within a Go application.
意思是go的库只是用来装载python创建的模型,然后执行的,而且在go版本api的godoc中也写到:
The tensorflow package currently does not have the ability to export a model to a directory from Go. This function thus currently targets loading models exported in other languages, such as using tf.saved_model.builder in Python. See: https://www.tensorflow.org/code/tensorflow/python/saved_model/
说go不能将模型导出,而且现阶段go版本的api没有直接创建variable的op,但是通过实验可以发现其实是可以使用的,先看/tensorflow/core/ops/state_ops.cc
中variable这个op的声明:
REGISTER_OP("VariableV2")
.Output("ref: Ref(dtype)")
.Attr("shape: shape")
.Attr("dtype: type")
.Attr("container: string = ''")
.Attr("shared_name: string = ''")
.SetIsStateful()
.SetShapeFn(shape_inference::ExplicitShape)
.Doc(R"doc(
Holds state in the form of a tensor that persists across steps.
Outputs a ref to the tensor state so it may be read or modified.
TODO(zhifengc/mrry): Adds a pointer to a more detail document
about sharing states in tensorflow.
ref: A reference to the variable tensor.
shape: The shape of the variable tensor.
dtype: The type of elements in the variable tensor.
container: If non-empty, this variable is placed in the given container.
Otherwise, a default container is used.
shared_name: If non-empty, this variable is named in the given bucket
with this shared_name. Otherwise, the node name is used instead.
)doc");
然后观察/tensorflow/go/op/wrappers.go
中调用类似的一个op叫placeholder的方法:
// A placeholder op that passes through `input` when its output is not fed.
//
// Arguments:
// input: The default value to produce when `output` is not fed.
// shape: The (possibly partial) shape of the tensor.
//
// Returns A placeholder tensor that defaults to `input` if it is not fed.
func PlaceholderWithDefault(scope *Scope, input tf.Output, shape tf.Shape) (output tf.Output) {
if scope.Err() != nil {
return
}
attrs := map[string]interface{}{"shape": shape}
opspec := tf.OpSpec{
Type: "PlaceholderWithDefault",
Input: []tf.Input{
input,
},
Attrs: attrs,
}
op := scope.AddOperation(opspec)
return op.Output(0)
}
可以看到使用tf.OpSpec
结构体,并且对特定格式把参数装进去就可以,经过实验,添加一个Variable的变量op到一个Scope是成功的。以此,在go版本上面做出optimizer等训练需要的东西,只需要自己封装好梯度计算的op,然后对变量进行增改op,完全可以做出一个拥有tensorflow-python版完整功能的api库。
另外,有一点是官方编译的libtensorflow.so文件里面是缺少contrib的内容的,具体解决办法是在tensorflow/BUILD
文件(r1.3)的以下小节加入依赖:
cc_binary(
name = "libtensorflow.so",
linkopts = select({
"//tensorflow:darwin": [
"-Wl,-exported_symbols_list", # This line must be directly followed by the exported_symbols.lds file
"//tensorflow/c:exported_symbols.lds",
],
"//tensorflow:windows": [],
"//tensorflow:windows_msvc": [],
"//conditions:default": [
"-z defs",
"-s",
"-Wl,--version-script", # This line must be directly followed by the version_script.lds file
"//tensorflow/c:version_script.lds",
],
}),
linkshared = 1,
deps = [
"//tensorflow/contrib:contrib_kernels", #Add
"//tensorflow/contrib:contrib_ops_op_lib", #Add
"//tensorflow/c:c_api",
"//tensorflow/c:exported_symbols.lds",
"//tensorflow/c:version_script.lds",
"//tensorflow/core:tensorflow",
],
)
有疑问加站长微信联系(非本文作者)