数据竞争(data race)
死锁也许听起来令人挺忧伤的,但伴随并发编程真正灾难性的错误其实是数据竞争,相当常见,也可能非常难于调试。
当两个线程并发地访问同一个变量,并且其中至少一个访问是写操作时,数据竞争就发生了。
下面的这个函数就有数据竞争问题,其行为是未定义的。例如,可能输出数值1。代码之后是一个可能性解释,试图搞清楚这一切是如何发生得。
1 2 3 4 5 6 7 8 9 10 11 12 13 |
func race() { wait := make(chan struct{}) n := 0 go func() { // 译注:注意下面这一行 n++ // 一次访问: 读, 递增, 写 close(wait) }() // 译注:注意下面这一行 n++ // 另一次冲突的访问 <-wait fmt.Println(n) // 输出:未指定 } |
代码中的两个goroutine(假设命名为g1
和g2
)参与了一次竞争,我们无法获知操作会以何种顺序发生。以下是诸多可能中的一种:
g1
从n
中获取值0g2
从n
中获取值0g1
将值从0增大到1g1
将1写到n
g2
将值从0增大到1g2
将1写到n
- 程序输出 n 的值,当前为1
“数据竞争(data race)”这名字有点误导的嫌疑。不仅操作的顺序是未定义的,其实根本没有任何保证(no guarantees whatsoever)。编译器和硬件为了得到更好的性能,经常都会对代码进行上下内外的顺序变换。如果你看到一个线程处于中间行为状态时,那么当时的场景可能就像下图所示的一样:
避免数据竞争的唯一方式是线程间同步访问所有的共享可变数据。有几种方式能够实现这一目标。Go语言中,通常是使用管道或者锁。(sync和sync/atomic包中还有更低层次的机制可供使用,但本文中不做讨论)。
Go语言中,处理并发数据访问的推荐方式是使用管道从一个goroutine中往下一个goroutine传递实际的数据。有格言说得好:“不要通过共享内存来通讯,而是通过通讯来共享内存”。
1 2 3 4 5 6 7 8 9 10 11 |
func sharingIsCaring() { ch := make(chan int) go func() { n := 0 // 仅为一个goroutine可见的局部变量. n++ ch <- n // 数据从一个goroutine离开... }() n := <-ch // ...然后安全到达另一个goroutine. n++ fmt.Println(n) // 输出: 2 } |
以上代码中的管道肩负双重责任 – 从一个goroutine将数据传递到另一个goroutine,并且起到同步的作用:发送方goroutine会等待另一个goroutine接收数据,接收方goroutine也会等待另一个goroutine发送数据。
Go语言内存模型 – 要保证一个goroutine中对一个变量的读操作得到的值正好是另一个goroutine中对同一个变量写操作产生的值,条件相当复杂,但goroutine之间只要通过管道来共享所有可变数据,那么就能远离数据竞争了。
检测数据竞争
竞争有时非常难于检测。下例中的这个函数有一个数据竞争问题,执行这个程序时会输出55555
。尝试一下,也许你会得到一个不同的结果。(sync.WaitGroup是Go语言标准库的一部分;用于等待一组goroutine结束运行。)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
func race() { var wg sync.WaitGroup wg.Add(5) // 译注:注意下面这行代码中的i++ for i := 0; i < 5; i++ { go func() { // 注意下一行代码会输出什么?为什么? fmt.Print(i) // 6个goroutine共享变量i wg.Done() }() } wg.Wait() // 等待所有(5个)goroutine运行结束 fmt.Println() } |
对于输出55555
,一个貌似合理的解释是:执行i
的goroutine在其他goroutine执行打印语句之前就完成了5次i
操作。实际上变量i
更新后的值为其他goroutine所见纯属巧合。
一个简单的解决方案是:使用一个局部变量,然后当开启新的goroutine时,将数值作为参数传递:
1 2 3 4 5 6 7 8 9 10 11 12 |
func correct() { var wg sync.WaitGroup wg.Add(5) for i := 0; i < 5; i++ { go func(n int) { // 使用局部变量 fmt.Print(n) wg.Done() }(i) } wg.Wait() fmt.Println() } |
这次代码就对了,程序会输出期望的结果,如:24031
。注意:goroutine之间的运行顺序是不确定的。
仍旧使用闭包,但能够避免数据竞争也是可能的,必须小心翼翼地让每个goroutine使用一个独有的变量。
1 2 3 4 5 6 7 8 9 10 11 12 13 |
func alsoCorrect() { var wg sync.WaitGroup wg.Add(5) for i := 0; i < 5; i++ { n := i // 为每个闭包创建一个独有的变量 go func() { fmt.Print(n) wg.Done() }() } wg.Wait() fmt.Println() } |
数据竞争自动检测
一般来说,不太可能能够自动检测发现所有可能的数据竞争情况,但Go(从版本1.1开始)有一个强大的数据竞争检测器。
这个工具用起来也很简单:只要在使用go
命令时加上-race
标记即可。开启检测器运行上面的程序会给出清晰且信息量大的输出:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
$ go run -race raceClosure.go Race: ================== WARNING: DATA RACE Read by goroutine 2: main.func·001() ../raceClosure.go:22 0x65 Previous write by goroutine 0: main.race() ../raceClosure.go:20 0x19b main.main() ../raceClosure.go:10 0x29 runtime.main() ../go/src/pkg/runtime/proc.c:248 0x91 Goroutine 2 (running) created at: main.race() ../raceClosure.go:24 0x18b main.main() ../raceClosure.go:10 0x29 runtime.main() ../go/src/pkg/runtime/proc.c:248 0x91 ================== 55555 Correct: 01234 Also correct: 01324 Found 1 data race(s) exit status 66 |
该工具发现一处数据竞争,包含:一个goroutine在第20行对一个变量进行写操作,跟着另一个goroutine在第22行对同一个变量进行了未同步的读操作。
参考链接:
http://blog.xiayf.cn/2015/05/20/fundamentals-of-concurrent-programming/
有疑问加站长微信联系(非本文作者)