一、概述
字节序:字节在电脑中存放时的序列与输入/输出时的序列;也指的是存放多字节数据的字节(byte)的顺序,典型的情况是整数在内存中的存放方式和网络传输的传输顺序。
先看下基本概念:
- 1、大端模式(Big endian):将高序字节存储在起始地址(按照从低地址到高地址的顺序存放数据的高位字节到低位字节)
- 2、小端模式(Little endian):将低序字节存储在起始地址(按照从低地址到高地址的顺序存放据的低位字节到高位字节)
在计算机领域中,大小端序是跟硬件的体系结构有关的。
举个栗子:如一个 var a = 0x11223344,对于这个变量的最高字节为0x11,最低字节为0x44。假设在内存中分配地址如下(地址都是连续的)
... | 0x0001 | 0x0002 | 0x0003 | 0x0004 | ... |
---|
当分别处于大小端模式下的内容存放如下
(1)大端模式存储(存储地址为16位)
地址 数据
0x0004(高地址) 0x44
0x0003 0x33
0x0002 0x22
0x0001(低地址) 0x11
(2)小端模式存储(存储地址为16位)
地址 数据
0x0004(高地址) 0x11
0x0003 0x22
0x0002 0x33
0x0001(低地址) 0x44
二、大端序和小端序
在前面也简单阐述了大小端序的定义并结合简单实例来说明,接下来会给出详细实例来说明:
1、大端序(Big-Endian):或称大尾序
一个类型: int32 的数 0X0A0B0C0D的内存存放情况
数据是以8bits为单位
示例中,最高有效位是将0x0A存储在最低的内存地址处,接着是0x0B存在后面的地址,类似十六进制字节从左往右的顺序。
数据以16bits为单位
最高的16bit单元0x0A0B存储在低位
2、小端序(little-endian):或称小尾序
数据以8bits为单位
示例中最低有效位则是0x0D存储的内存地址处,后面依次存放在后面的地址处。
数据以16bits为单位
最低的16bit单元0x0C0D存储在低位。
3、总结
采用大端序的CPU和采用小端序的CPU不仅在字节上是相反的,在比特位上也是相反的。
比如0x01在内存中的存储
大端序:内存低比特位 00000001 内存高比特位
小端序:内存低比特位 10000000 内存高比特位
比如0x00000001
大端序:内存低比特位 00000000 00000000 00000000 00000001 内存高比特位
小端序:内存低比特位 10000000 00000000 00000000 00000000 内存高比特位
三、应用
其实在前面罗列出那么东西,最终是为了接下来讲述的在golang中涉及到网络传输、文件存储时的选择。一般来说网络传输的字节序,可能是大端序或者小端序,取决于软件开始时通讯双方的协议规定。TCP/IP协议RFC1700规定使用“大端”字节序为网络字节序,开发的时候需要遵守这一规则。默认golang是使用大端序。详情见golang中包encoding/binary已提供了大、小端序的使用
import (
"encoding/binary"
"fmt"
)
func BigEndian() { // 大端序
// 二进制形式:0000 0000 0000 0000 0001 0002 0003 0004
var testInt int32 = 0x01020304 // 十六进制表示
fmt.Printf("%d use big endian: \n", testInt)
var testBytes []byte = make([]byte, 4)
binary.BigEndian.PutUint32(testBytes, uint32(testInt)) //大端序模式
fmt.Println("int32 to bytes:", testBytes)
convInt := binary.BigEndian.Uint32(testBytes) //大端序模式的字节转为int32
fmt.Printf("bytes to int32: %d\n\n", convInt)
}
func LittleEndian() { // 小端序
//二进制形式: 0000 0000 0000 0000 0001 0002 0003 0004
var testInt int32 = 0x01020304 // 16进制
fmt.Printf("%d use little endian: \n", testInt)
var testBytes []byte = make([]byte, 4)
binary.LittleEndian.PutUint32(testBytes, uint32(testInt)) //小端序模式
fmt.Println("int32 to bytes:", testBytes)
convInt := binary.LittleEndian.Uint32(testBytes) //小端序模式的字节转换
fmt.Printf("bytes to int32: %d\n\n", convInt)
}
func main() {
BigEndian()
LittleEndian()
}
输出结果:
16909060 use big endian:
int32 to bytes: [1 2 3 4] ### [0001 0002 0003 0004]
bytes to int32: 16909060
16909060 use little endian:
int32 to bytes: [4 3 2 1] ### [0004 0003 0002 0001]
bytes to int32: 16909060
四、RPCX
在RPCX框架中关于RPC调用过程涉及的传递消息进行编码的,采用的就是大端序模式
func (m Message) Encode() []byte { // 编码消息
// 编码metadata将key-value转为key=value&key=value形式
meta := encodeMetadata(m.Metadata)
spL := len(m.ServicePath) // 服务长度
smL := len(m.ServiceMethod) // 服务函数
var err error
payload := m.Payload // 消息体
if m.CompressType() != None { // 压缩
compressor := Compressors[m.CompressType()]
if compressor == nil { // 默认使用None压缩类型
m.SetCompressType(None)
} else {
payload, err = compressor.Zip(m.Payload) // GZIP压缩
if err != nil { // 压缩失败 不对传输消息进行压缩
m.SetCompressType(None)
payload = m.Payload
}
}
}
// RPCX数据包 = header + ID + total size +
// 服务名及内容: servicePath(size(servicePath) 、len(servicePath)) +
// 服务函数及内容:serviceMethod(size(serviceMethod) 、 len(serviceMethod)) +
// 元数据及内容: metadata(size(metadata) 、len(metadata)) +
// 消息体及内容:payload(size(payload) 、 len(payload))
// 消息长度 = size(servicePath) + len(servicePath) + size(serviceMethod)
// + len(serviceMethod) + size(metadata) + len(metadata)
// + size(payload) + len(payload)
totalL := (4 + spL) + (4 + smL) + (4 + len(meta)) + (4 + len(payload))
// header + dataLen + spLen + sp + smLen + sm
// + metaL + meta + payloadLen + payload
metaStart := 12 + 4 + (4 + spL) + (4 + smL) // meata开始位置
payLoadStart := metaStart + (4 + len(meta)) // payLoad开始位置
l := 12 + 4 + totalL
data := make([]byte, l)
copy(data, m.Header[:]) // 拷贝header内容
// 将数据包以大端序模式进行编码
//totalLen
binary.BigEndian.PutUint32(data[12:16], uint32(totalL)) //
binary.BigEndian.PutUint32(data[16:20], uint32(spL))
copy(data[20:20+spL], util.StringToSliceByte(m.ServicePath))
binary.BigEndian.PutUint32(data[20+spL:24+spL], uint32(smL))
copy(data[24+spL:metaStart], util.StringToSliceByte(m.ServiceMethod))
binary.BigEndian.PutUint32(data[metaStart:metaStart+4], uint32(len(meta)))
copy(data[metaStart+4:], meta)
binary.BigEndian.PutUint32(data[payLoadStart:payLoadStart+4],
uint32(len(payload)))
copy(data[payLoadStart+4:], payload)
return data
}
有疑问加站长微信联系(非本文作者)