本篇开始进入"用Go构建区块链"系列,主要对原文进行翻译。本篇对应原文如下:
Building Blockchain in Go. Part 1: Basic Prototype
话不多说,开始进入正文。
1、介绍
区块链是21世纪最具革命性的技术之一,它仍在逐步发展中,并且其潜力还未被充分认识。本质上,区块链只是一个分布式数据库而已。但是,它的独特之处在于它不是一个私有的数据库,而是一个公共的,即每个使用它的人都拥有它的全部或部分副本。只有得到其他数据库管理员的同意,新的记录才能被加入。正因为由此区块链,才使得加密货币和智能合约成为可能。
在本系列文章中,我们将构建一个基于简单区块链实现的简单加密货币。
2、区块
我们从"区块链"的"区块"部分开始。在区块链中,它存储有价值的信息。例如,比特币块存储交易信息,这是所有加密货币的本质。除此之外,区块还包含一些技术信息,如版本号、当前时间戳和上一个区块的哈希。
在本文中,我们不会实现区块链中描述的区块,也不会是比特币技术规范中的区块,而是使用简化版本,其中只包含重要信息。这是它的样子:
type Block struct {
Timestamp int64
Data []byte
PrevBlockHash []byte
Hash []byte
}
Timestamp
是当前时间戳(区块被创建时), Data
是包含在区块中的实际有价值的信息,而 Hash
是当前区块的哈希。在比特币技术规范中, Timestamp
,PrevBlockHash
和 Hash
是区块头,它们形成一个单独的数据结构,而交易(在我们的例子中是数据)是一个独立的数据结构。我们这里简单起见,混合在一起了。
那么,怎么计算哈希呢?哈希的计算方式在区块链中是一个非常重要的特性,正是这一特性使得区块链更加安全。问题是计算哈希是一个难以计算的操作,即使在很快的计算机上也需要话费很多时间(这就是为什么人们购买强大的GPU来挖比特币)。这是一个架构上有意为之的设计,这使得添加新的区块变得困难,从而阻止添加后的修改。我们将在接下来的文章中去讨论和实现这个机制。
现在,我们只取了区块字段,并把它们拼接起来,并在连接的组合上计算SHA-256哈希。 让我们在 SetHash
方法中完成这些操作:
func (b *Block) SetHash() {
timestamp := []byte(strconv.FormatInt(b.Timestamp, 10))
headers := bytes.Join([][]byte{b.PrevBlockHash, b.Data, timestamp}, []byte{})
hash := sha256.Sum256(headers)
b.Hash = hash[:]
}
接下来,按照Golang的约定,我们将实现一个将简化创建区块的函数:
func NewBlock(data string, prevBlockHash []byte) *Block {
block := &Block{time.Now().Unix(), []byte(data), prevBlockHash, []byte{}}
block.SetHash()
return block
}
好了,这就是区块!
3、区块链
现在我们来实现一个区块链。其本质区块链仅仅是一个具有特定结构的数据库:它是一个有序的,尾部相连的链表。这意味着区块按照插入的顺序来存储,并且每个区块都链接着前一个区块。该结构允许快速获取链中的最新块,并通过其哈希(有效)获取区块。
在Golang中,这个结构可以通过使用array和map来实现:array存储有序的哈希 (Golang中,array是有序的),并且 map 结构可以保存 hash -> block
的匹配信息。但在我们的区块链原型中,我们只会使用一个array,因为我们暂时并不需要通过 哈希来获取区块信息。
type Blockchain struct {
blocks []*Block
}
这是我们的第一块区块链!我从未想过它会如此轻松????
现在,让我们能够给它添加一个区块:
func (bc *Blockchain) AddBlock(data string) {
prevBlock := bc.blocks[len(bc.blocks)-1]
newBlock := NewBlock(data, prevBlock.Hash)
bc.blocks = append(bc.blocks, newBlock)
}
就这样!还是?
要添加新的区块,我们需要一个已存在的区块,然而我们的区块链上还没有一个区块!因此,在任何区块链中,必须至少有一个区块,而这个区块是链中的第一个区块,称为创世区块。让我们实现一个创建创世区块的函数:
func NewGenesisBlock() *Block {
return NewBlock("Genesis Block", []byte{})
}
现在,我们可以实现一个创建包含创世区块的区块链的函数:
func NewBlockchain() *Blockchain {
return &Blockchain{[]*Block{NewGenesisBlock()}}
}
现在,让我们来检查一下区块链是否正常工作:
func main() {
bc := NewBlockchain()
bc.AddBlock("Send 1 BTC to Ivan")
bc.AddBlock("Send 2 more BTC to Ivan")
for _, block := range bc.blocks {
fmt.Printf("Prev. hash: %x\n", block.PrevBlockHash)
fmt.Printf("Data: %s\n", block.Data)
fmt.Printf("Hash: %x\n", block.Hash)
fmt.Println()
}
}
输出:
Prev. hash:
Data: Genesis Block
Hash: aff955a50dc6cd2abfe81b8849eab15f99ed1dc333d38487024223b5fe0f1168
Prev. hash: aff955a50dc6cd2abfe81b8849eab15f99ed1dc333d38487024223b5fe0f1168
Data: Send 1 BTC to Ivan
Hash: d75ce22a840abb9b4e8fc3b60767c4ba3f46a0432d3ea15b71aef9fde6a314e1
Prev. hash: d75ce22a840abb9b4e8fc3b60767c4ba3f46a0432d3ea15b71aef9fde6a314e1
Data: Send 2 more BTC to Ivan
Hash: 561237522bb7fcfbccbc6fe0e98bbbde7427ffe01c6fb223f7562288ca2295d1
没错,就这样!
4、总结
我们构建了一个非常简单的区块链原型:它只是一个包含有区块的数组,每个区块和前一个相连接。真实的区块链比这个复杂得多。在我们的区块链中,添加新的区块非常简单而且很好,但是在真实的区块链中添加新区块需要做很多工作:一是需要在添加区块前做一些复杂的计算来获取添加区块的权限(这个过程被称为 工作量证明
)。另外,区块链是一个分布式数据库,其没有单一的决策者。因此,一个新的区块必须得到网络的其他参与者的确认和同意(这种机制被称为共识)。而且,我们的区块链还没有交易!
在以后的文章中,我们将介绍这些功能。
链接:
1.获取源码:https://github.com/Jeiwan/blockchain_go/tree/part_1
2.区块哈希算法:https://en.bitcoin.it/wiki/Block_hashing_algorithm
有疑问加站长微信联系(非本文作者)