go推荐系统项目介绍

puyu · · 3473 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

近期想使用推荐系统实现一些功能,由于不懂Java,担心Python的性能不够,因此就关注了go语言实现的开源项目。

推荐系统中的协同过滤算法原理

协同过滤的原理很简单,就是根据用户对物品或者信息的偏好,发现物品或者内容本身的相关性, 或者是发现用户的相关性,然后再基于这些关联性进行推荐

这里主要实现了基于用户和基于项目的协同过滤两种推荐算法1

基于用户的协同推荐(User based Collaborative Filtering Recommendation)

基于用户协同推荐的原理是,根据所有用户对物品或者信息的偏好,发现当前用户口味和偏好相似的“邻居”用户群, 基于邻居的偏好信息,对用户进行推荐

举例, 假设有以下关系

A --> a,c 表示用户A喜欢物品a和c
B --> b
C --> a,c,d
可以发现用户A和C的口味偏好相似(他们是邻居),同时C喜欢物品d,那么我们可以推断 用户A也可能喜欢物品d

Item based Collaborative Filtering Recommendation

基于项目的协同推荐

基于项目的协同推荐的原理是,它使用所有用户对物品或者信息的偏好,发现物品和物品之间的相似度, 然后根据用户的历史偏好信息,将类似的物品推荐给用户

举例,假设有以下关系

A --> a,c
B --> a,b,c
C --> a
根据基于项目的协同过滤原理,可以发现物品a和物品c相似,用户C喜欢a物品,那么可以把c物品推荐给他

在github上搜索,发现项目较少,较为完善的是gorse项目

gorse: Go Recommender System Engine

gorse使用go语言实现推荐系统,提供以下模块方便构建推荐系统:

  • 数据:支持从文件加载(提供内置部分数据可用于测试)
  • 分离器:支持K-fold、比率、保留方式分离数据集
  • 模型:推荐模型基于协同过滤算法,包括矩阵分解、基于临接的方法、Slope One、Co-Clustering2
  • 评估:可使用RMSE、MAE来评分,包括准确率、召回率、 归一化折损累积增益NDCG、平均准确率MAP、 MRR、AUC.
  • 参数搜寻:使用网格或随机方式寻找最佳超参
  • 持久化:保存模型或加载模型
  • SIMD(可选):理论上在对矢量采用AVX2指令,可以获得比单指令快4倍的速度

项目地址:github.com/zhenghaoz/gorse


  1. 推荐项亮著的推荐系统实践
  2. 实现推荐系统引擎(一):评分预测

有疑问加站长微信联系(非本文作者)

本文来自:Segmentfault

感谢作者:puyu

查看原文:go推荐系统项目介绍

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

3473 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传