先上结论吧
- select 是针对chan类型的, 所以case 只有default和chan(读/写)两种
- 遍历case的时候顺序不确定,但chan的优先级比default高。当有default和可执行的chan时,总是执行chan
- 当没有default,且无可执行的chan时,阻塞
- select{}, 阻塞
开始看源码吧
scase
// case 的几种类型
const (
caseNil = iota
caseRecv
caseSend
caseDefault
)
type scase struct {
c *hchan // chan
elem unsafe.Pointer // data element 数据元素
kind uint16 // 对应const的那几种类型
pc uintptr // race pc (for race detector / msan)
releasetime int64
}
入口
func reflect_rselect(cases []runtimeSelect) (int, bool) {
// 没有case 时直接阻塞, 所以我们在demo时 main(){ .... select{} }
if len(cases) == 0 {
block()
}
sel := make([]scase, len(cases))
// 为什么是 2 倍呢? 后面的pollorder和lockorder会用到
order := make([]uint16, 2*len(cases))
for i := range cases {
rc := &cases[i]
switch rc.dir {
case selectDefault:
sel[i] = scase{kind: caseDefault}
case selectSend:
sel[i] = scase{kind: caseSend, c: rc.ch, elem: rc.val}
case selectRecv:
sel[i] = scase{kind: caseRecv, c: rc.ch, elem: rc.val}
}
if raceenabled || msanenabled {
selectsetpc(&sel[i])
}
}
return selectgo(&sel[0], &order[0], len(cases))
}
这里主要是初始化case数组。重点在selectgo中
func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) {
if debugSelect {
print("select: cas0=", cas0, "\n")
}
// 指向case数组首地址
cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0))
// order1 长度是 cas1 的两倍
order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0))
// slice里面有两个冒号什么意思呢? a[x:y:z] 切片长度: y-x 切片容量:z-x
scases := cas1[:ncases:ncases]
// 轮询顺序
pollorder := order1[:ncases:ncases]
// chan 加锁顺序
lockorder := order1[ncases:][:ncases:ncases] //赋值完之后,其实只用了order1的 2*ncases长度,pollorder占了前面ncases, lockorder占了后面ncases
// Replace send/receive cases involving nil channels with
// caseNil so logic below can assume non-nil channel.
for i := range scases {
cas := &scases[i]
if cas.c == nil && cas.kind != caseDefault {
*cas = scase{}
}
}
var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
for i := 0; i < ncases; i++ {
scases[i].releasetime = -1
}
}
// 洗牌 打乱pollorder顺序
for i := 1; i < ncases; i++ {
j := fastrandn(uint32(i + 1))
pollorder[i] = pollorder[j]
pollorder[j] = uint16(i)
}
// sort the cases by Hchan address to get the locking order.
// simple heap sort, to guarantee n log n time and constant stack footprint.
// 下面一堆for循环,根据 hchan的地址排序, 生成lockorder加锁顺序
for i := 0; i < ncases; i++ {
j := i
// Start with the pollorder to permute cases on the same channel.
c := scases[pollorder[i]].c
// 这里的sortkey() 其实只是返回内存地址
for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() {
k := (j - 1) / 2
lockorder[j] = lockorder[k]
j = k
}
lockorder[j] = pollorder[i]
}
for i := ncases - 1; i >= 0; i-- {
o := lockorder[i]
c := scases[o].c
lockorder[i] = lockorder[0]
j := 0
for {
k := j*2 + 1
if k >= i {
break
}
if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() {
k++
}
if c.sortkey() < scases[lockorder[k]].c.sortkey() {
lockorder[j] = lockorder[k]
j = k
continue
}
break
}
lockorder[j] = o
}
if debugSelect {
for i := 0; i+1 < ncases; i++ {
if scases[lockorder[i]].c.sortkey() > scases[lockorder[i+1]].c.sortkey() {
print("i=", i, " x=", lockorder[i], " y=", lockorder[i+1], "\n")
throw("select: broken sort")
}
}
}
// lock all the channels involved in the select
sellock(scases, lockorder)
var (
gp *g
sg *sudog
c *hchan
k *scase
sglist *sudog
sgnext *sudog
qp unsafe.Pointer
nextp **sudog
)
loop:
// pass 1 - look for something already waiting
// CASE 1: case中有可执行的chan, 或者存在default case
var dfli int
var dfl *scase
var casi int
var cas *scase
var recvOK bool
//开始遍历case数组了
for i := 0; i < ncases; i++ {
casi = int(pollorder[i])
cas = &scases[casi]
c = cas.c
switch cas.kind {
// chan 为空 下一轮循环
case caseNil:
continue
case caseRecv: // 接收chan
sg = c.sendq.dequeue()
//当chan的send队列存在 G 时
if sg != nil {
goto recv
}
// 当chan的缓存队列存在元素时
if c.qcount > 0 {
goto bufrecv
}
// 当chan关闭时
if c.closed != 0 {
goto rclose
}
case caseSend: // 发送队列
if raceenabled {
racereadpc(c.raceaddr(), cas.pc, chansendpc)
}
// chan关闭时
if c.closed != 0 {
goto sclose
}
sg = c.recvq.dequeue()
// chan的接收队列存在 G 时
if sg != nil {
goto send
}
// chan的缓存队列的元素少于缓存容量时
if c.qcount < c.dataqsiz {
goto bufsend
}
case caseDefault: // case default, 你看 default的情况并没有结束循环,说明 chan的优先级比default高
dfli = casi
dfl = cas
}
}
if dfl != nil {
selunlock(scases, lockorder)
casi = dfli
cas = dfl
goto retc
}
// pass 2 - enqueue on all chans
// CASE 2: 将当前的 G 加入的 chan 的等待队列中
gp = getg()
if gp.waiting != nil {
throw("gp.waiting != nil")
}
nextp = &gp.waiting
for _, casei := range lockorder {
casi = int(casei)
cas = &scases[casi]
if cas.kind == caseNil {
continue
}
c = cas.c
sg := acquireSudog()
sg.g = gp
sg.isSelect = true
// No stack splits between assigning elem and enqueuing
// sg on gp.waiting where copystack can find it.
sg.elem = cas.elem
sg.releasetime = 0
if t0 != 0 {
sg.releasetime = -1
}
sg.c = c
// Construct waiting list in lock order.
*nextp = sg
nextp = &sg.waitlink
switch cas.kind {
case caseRecv:
// 加入等待接收队列
// 不断的循环是不是会导致队列边长呢? 其实不是的, 因为在CASE 1 的时候有做出栈操作
c.recvq.enqueue(sg)
case caseSend:
// 加入等待发送队列
c.sendq.enqueue(sg)
}
}
// wait for someone to wake us up
gp.param = nil
// 当前 G 进入休眠
gopark(selparkcommit, nil, waitReasonSelect, traceEvGoBlockSelect, 1)
sellock(scases, lockorder)
gp.selectDone = 0
sg = (*sudog)(gp.param)
gp.param = nil
// pass 3 - dequeue from unsuccessful chans
// otherwise they stack up on quiet channels
// record the successful case, if any.
// We singly-linked up the SudoGs in lock order.
// CASE 3: 被唤醒, 这种情况是不存在default的时候
casi = -1
cas = nil
sglist = gp.waiting
// Clear all elem before unlinking from gp.waiting.
for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink {
sg1.isSelect = false
sg1.elem = nil
sg1.c = nil
}
gp.waiting = nil
for _, casei := range lockorder {
k = &scases[casei]
if k.kind == caseNil {
continue
}
if sglist.releasetime > 0 {
k.releasetime = sglist.releasetime
}
// 这段代码一直没想明白,直到我回想到chan的send()方法时,才有些明白了。
// sg = (*sudog)(gp.param), gp.param其实就是sudog,也就是加入等待队列时的sudog。
// 当被唤醒时,唤醒的是gp.param,所以遍历等待队列 判断sudog相等就可以确定是哪个case了
if sg == sglist {
// sg has already been dequeued by the G that woke us up.
casi = int(casei)
cas = k
} else {
c = k.c
if k.kind == caseSend {
c.sendq.dequeueSudoG(sglist)
} else {
c.recvq.dequeueSudoG(sglist)
}
}
sgnext = sglist.waitlink
sglist.waitlink = nil
releaseSudog(sglist)
sglist = sgnext
}
// 没找到对应的case, 重新进入loop
if cas == nil {
goto loop
}
c = cas.c
if debugSelect {
print("wait-return: cas0=", cas0, " c=", c, " cas=", cas, " kind=", cas.kind, "\n")
}
if cas.kind == caseRecv {
recvOK = true
}
if raceenabled {
if cas.kind == caseRecv && cas.elem != nil {
raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc)
} else if cas.kind == caseSend {
raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
}
}
if msanenabled {
if cas.kind == caseRecv && cas.elem != nil {
msanwrite(cas.elem, c.elemtype.size)
} else if cas.kind == caseSend {
msanread(cas.elem, c.elemtype.size)
}
}
selunlock(scases, lockorder)
goto retc
bufrecv:
// can receive from buffer
if raceenabled {
if cas.elem != nil {
raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc)
}
raceacquire(chanbuf(c, c.recvx))
racerelease(chanbuf(c, c.recvx))
}
if msanenabled && cas.elem != nil {
msanwrite(cas.elem, c.elemtype.size)
}
recvOK = true
qp = chanbuf(c, c.recvx)
if cas.elem != nil {
// 将chan缓存中的数据拷贝到 case.elem。 eg: a := <-ch, a就是case.elem
typedmemmove(c.elemtype, cas.elem, qp)
}
typedmemclr(c.elemtype, qp)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.qcount--
selunlock(scases, lockorder)
goto retc
bufsend:
// can send to buffer
if raceenabled {
raceacquire(chanbuf(c, c.sendx))
racerelease(chanbuf(c, c.sendx))
raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
}
if msanenabled {
msanread(cas.elem, c.elemtype.size)
}
// 将cas.elem拷贝到chan的缓存中。eg: ch <- a, a 就是 cas.elem
typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem)
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
selunlock(scases, lockorder)
goto retc
recv:
// can receive from sleeping sender (sg)
recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
if debugSelect {
print("syncrecv: cas0=", cas0, " c=", c, "\n")
}
recvOK = true
goto retc
rclose:
// read at end of closed channel
selunlock(scases, lockorder)
recvOK = false
if cas.elem != nil {
typedmemclr(c.elemtype, cas.elem)
}
if raceenabled {
raceacquire(c.raceaddr())
}
goto retc
send:
// can send to a sleeping receiver (sg)
if raceenabled {
raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
}
if msanenabled {
msanread(cas.elem, c.elemtype.size)
}
send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
if debugSelect {
print("syncsend: cas0=", cas0, " c=", c, "\n")
}
goto retc
retc:
if cas.releasetime > 0 {
blockevent(cas.releasetime-t0, 1)
}
return casi, recvOK
sclose:
// send on closed channel
selunlock(scases, lockorder)
panic(plainError("send on closed channel"))
}
bufrecv、bufsend、recv、rclose、send最终都会跳转到retc。 这里涉及到一些channel的知识,有兴趣的可以看我另一篇关于channel的文章 https://www.jianshu.com/p/9dd5e77469da
有疑问加站长微信联系(非本文作者)