架构模式,可以使你的代码可复用性高,代码整洁,如果不用架构模式写出来的代码就是字符的堆砌,没有美感。
掌握了golang的基础之后,就应该在之后的代码中以架构模式的方式去编程。
第一种架构模式 pipe-filter。
pipe-filter
- 其架构适用于 解析,过滤,处理,返回这样的架构,如数据分析。
- filter 用于数据的过滤。而pipe 用于连接filter传递数据,或者异步处理缓冲数据流。
-
松耦合:filter 只和数据耦合。
下面的例子是一个将 字符串“1,2,3” 按逗号切分后,再字符转数字相加的过程。
1、首先实现一个 filter 的接口。该接口定义了数据的来源接口,输出接口,该filter接口必须拥有的处理方法
filter.go
package pipe_filter
// Request is the input of the filter
type Request interface{}
// Response is the output of the filter
type Response interface{}
// Filter interface is the definition of the data processing components
// Pipe-Filter structure
type Filter interface {
Process(data Request) (Response, error)
}
2、定义一个pipe-line, 目的是为了将所有的filter串起来。
pipe.go
package pipe_filter
// NewStraightPipeline create a new StraightPipelineWithWallTime
func NewStraightPipeline(name string, filters ...Filter) *StraightPipeline {
return &StraightPipeline{
Name: name,
Filters: &filters,
}
}
// StraightPipeline is composed of the filters, and the filters are piled as a straigt line.
type StraightPipeline struct {
Name string
Filters *[]Filter
}
// Process is to process the coming data by the pipeline
func (f *StraightPipeline) Process(data Request) (Response, error) {
var ret interface{}
var err error
for _, filter := range *f.Filters {
ret, err = filter.Process(data)
if err != nil {
return ret, err
}
data = ret
}
return ret, err
}
3、定义需要的filter,在这里filter的工作顺序是串行的,首先是按“,”拆分,其次将字符型转换为数字形。最后加起来。每个filter都必须实现一个Process方法,因为只是在filter.go 里定义好的。
split_filter.go (拆分)
package pipe_filter
import (
"errors"
"strings"
)
var SplitFilterWrongFormatError = errors.New("input data should be string")
type SplitFilter struct {
delimiter string
}
func NewSplitFilter(delimiter string) *SplitFilter {
return &SplitFilter{delimiter}
}
func (sf *SplitFilter) Process(data Request) (Response, error) {
str, ok := data.(string) //检查数据格式/类型,是否可以处理
if !ok {
return nil, SplitFilterWrongFormatError
}
parts := strings.Split(str, sf.delimiter)
return parts, nil
}
toint_filter.go (字符转整数)
package pipe_filter
import (
"errors"
"strconv"
)
var ToIntFilterWrongFormatError = errors.New("input data should be []string")
type ToIntFilter struct {
}
func NewToIntFilter() *ToIntFilter {
return &ToIntFilter{}
}
func (tif *ToIntFilter) Process(data Request) (Response, error) {
parts, ok := data.([]string)
if !ok {
return nil, ToIntFilterWrongFormatError
}
ret := []int{}
for _, part := range parts {
s, err := strconv.Atoi(part)
if err != nil {
return nil, err
}
ret = append(ret, s)
}
return ret, nil
}
sum_filter.go (累加)
package pipe_filter
import "errors"
var SumFilterWrongFormatError = errors.New("input data should be []int")
type SumFilter struct {
}
func NewSumFilter() *SumFilter {
return &SumFilter{}
}
func (sf *SumFilter) Process(data Request) (Response, error) {
elems, ok := data.([]int)
if !ok {
return nil, SumFilterWrongFormatError
}
ret := 0
for _, elem := range elems {
ret += elem
}
return ret, nil
}
这下一个完美的 pipe-filter 就完成了
看下如何调用呢?
package main
import (
"fmt"
"godemo/pipe-filter"
"log"
)
func main() {
spliter := pipe_filter.NewSplitFilter(",")
converter := pipe_filter.NewToIntFilter()
sum := pipe_filter.NewSumFilter()
sp := pipe_filter.NewStraightPipeline("p1", spliter, converter, sum)
ret, err := sp.Process("1,2,3")
if err != nil {
log.Fatal(err)
}
if ret != 6 {
log.Fatalf("The expected is 6, but the actual is %d", ret)
}
fmt.Println(ret)
}
执行结果:
6
有疑问加站长微信联系(非本文作者)