sort 包 在内部实现了四种基本的排序算法:插入排序(insertionSort)、归并排序(symMerge)、堆排序(heapSort)和快速排序(quickSort); sort 包会依据实际数据自动选择最优的排序算法。所以我们写代码时只需要考虑实现 sort.Interface 这个类型就可以了。
源码
源码包 sort sort 包定义了Interface接口,包含一下三个方法,只要实现了这个接口,就可以调用sort包中的排序方法。
type Interface interface {
// Len is the number of elements in the collection.
Len() int
// Less reports whether the element with
// index i should sort before the element with index j.
Less(i, j int) bool
// Swap swaps the elements with indexes i and j.
Swap(i, j int)
}
复制代码
先看看 sort 包本身对于 []int 类型如何排序
# sort/sort.go
// IntSlice attaches the methods of Interface to []int, sorting in increasing order.
type IntSlice []int
func (p IntSlice) Len() int { return len(p) }
func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p IntSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Sort is a convenience method.
func (p IntSlice) Sort() { Sort(p) }
复制代码
IntSlice 使用的是 快速排序
# sort/sort.go
// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func Sort(data Interface) {
n := data.Len()
quickSort(data, 0, n, maxDepth(n))
}
复制代码
sort 包 在内部实现了四种基本的排序算法:插入排序(insertionSort)、归并排序(symMerge)、堆排序(heapSort)和快速排序(quickSort); sort 包会依据实际数据自动选择最优的排序算法。所以我们写代码时只需要考虑实现 sort.Interface 这个类型就可以了。
sort.go文件中还定义了 IsSorted() Reverse() 等方法,只要实现了 Interface 接口,就可以调用这些方法。
例子
type TDepartment struct {
Ctx context.Context `json:"-" db:"-"`
DeptId int64 `json:"f_dept_id" db:"f_dept_id"`
CorpId int64 `json:"f_corp_id" db:"f_corp_id"`
ParentDeptId int64 `json:"f_parent_dept_id" db:"f_parent_dept_id"`
Sort int32 `json:"f_sort" db:"f_sort"`
DeptName string `json:"f_dept_name" db:"f_dept_name"`
CreateTime string `json:"f_create_time" db:"f_create_time"`
ModifyTime string `json:"f_modify_time" db:"f_modify_time"`
}
type TDepartmentSlice []*TDepartment
func (p TDepartmentSlice) Len() int { return len(p) }
// 根据DeptId 排序
func (p TDepartmentSlice) Less(i, j int) bool {
return p[i].DeptId < p[j].DeptId
}
func (p TDepartmentSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
type SortTDepartmentSliceByCreateTime struct {
TDepartmentSlice
}
func (this SortTDepartmentSliceByCreateTime) Less(i, j int) bool {
t1, _ := time.Parse("2006-01-02 15:04:05", this.TDepartmentSlice[i].CreateTime)
t2, _ := time.Parse("2006-01-02 15:04:05", this.TDepartmentSlice[j].CreateTime)
return t1.Unix() < t2.Unix()
}
//func (this TDepartmentSlice) Swap(i, j int) { this[i], this[j] = this[j], this[i] }
func main() {
t1 := TDepartment{
DeptId: 1,
CreateTime: "2019-08-10 15:11:12",
}
t2 := TDepartment{
DeptId: 2,
CreateTime: "2019-08-10 15:11:23",
}
t3 := TDepartment{
DeptId: 4,
CreateTime: "2019-08-18 15:11:12",
}
t4 := TDepartment{
DeptId: 3,
CreateTime: "2019-08-08 15:11:12",
}
penson := TDepartmentSlice{}
penson = append(penson, &t1, &t2, &t3, &t4)
for _, v := range penson {
fmt.Println(fmt.Sprintf("deptId:%v.createTime:%v", v.DeptId, v.CreateTime))
}
sort.Sort(TDepartmentSlice(penson))
for _, v := range penson {
fmt.Println(fmt.Sprintf("deptId:%v.createTime:%v", v.DeptId, v.CreateTime))
}
sort.Sort(SortTDepartmentSliceByCreateTime{penson})
for _, v := range penson {
fmt.Println(fmt.Sprintf("deptId:%v.createTime:%v",v.DeptId,v.CreateTime))
}
}
复制代码
总结
- 如果要对slice实现排序,就需要实现 Interface接口
有疑问加站长微信联系(非本文作者)