一直找集群的算法,刚好golang上面有一个适合。下面作为菜鸟来分析一下
// Copyright (C) 2012 Numerotron Inc. // Use of this source code is governed by an MIT-style license // that can be found in the LICENSE file. // Package consistent provides a consistent hashing function. // // Consistent hashing is often used to distribute requests to a changing set of servers. For example, // say you have some cache servers cacheA, cacheB, and cacheC. You want to decide which cache server // to use to look up information on a user. // // You could use a typical hash table and hash the user id // to one of cacheA, cacheB, or cacheC. But with a typical hash table, if you add or remove a server, // almost all keys will get remapped to different results, which basically could bring your service // to a grinding halt while the caches get rebuilt. // // With a consistent hash, adding or removing a server drastically reduces the number of keys that // get remapped. // // Read more about consistent hashing on wikipedia: http://en.wikipedia.org/wiki/Consistent_hashing // package main import ( "errors" "fmt" "hash/crc32" "log" "sort" "strconv" "sync" ) type uints []uint32 // Len returns the length of the uints array. func (x uints) Len() int { return len(x) } // Less returns true if element i is less than element j. func (x uints) Less(i, j int) bool { return x[i] < x[j] } // Swap exchanges elements i and j. func (x uints) Swap(i, j int) { x[i], x[j] = x[j], x[i] } // ErrEmptyCircle is the error returned when trying to get an element when nothing has been added to hash. var ErrEmptyCircle = errors.New("empty circle") // Consistent holds the information about the members of the consistent hash circle. type Consistent struct { circle map[uint32]string members map[string]bool sortedHashes uints // 已经排好序的hashes slice , 主要有力搜索 (存储的内容是全部虚拟hashes值) NumberOfReplicas int count int64 scratch [64]byte sync.RWMutex } // New creates a new Consistent object with a default setting of 20 replicas for each entry. // // To change the number of replicas, set NumberOfReplicas before adding entries. func New() *Consistent { c := new(Consistent) c.NumberOfReplicas = 20 c.circle = make(map[uint32]string) c.members = make(map[string]bool) //log.Printf("%p", c) return c } // eltKey generates a string key for an element with an index. func (c *Consistent) eltKey(elt string, idx int) string { return elt + "|" + strconv.Itoa(idx) } // Add inserts a string element in the consistent hash. func (c *Consistent) Add(elt string) { c.Lock() defer c.Unlock() for i := 0; i < c.NumberOfReplicas; i++ { fmt.Println("i:",i,c.hashKey(c.eltKey(elt, i))) c.circle[c.hashKey(c.eltKey(elt, i))] = elt } //log.Fatal(len(c.circle)) //log.Println(len(c.members), elt) c.members[elt] = true c.updateSortedHashes() c.count++ } // Remove removes an element from the hash. func (c *Consistent) Remove(elt string) { c.Lock() defer c.Unlock() for i := 0; i < c.NumberOfReplicas; i++ { delete(c.circle, c.hashKey(c.eltKey(elt, i))) } delete(c.members, elt) c.updateSortedHashes() c.count-- } // Set sets all the elements in the hash. If there are existing elements not present in elts, they will be removed. func (c *Consistent) Set(elts []string) { mems := c.Members() for _, k := range mems { found := false for _, v := range elts { if k == v { found = true break } } if !found { c.Remove(k) } } for _, v := range elts { c.RLock() _, exists := c.members[v] c.RUnlock() if exists { continue } c.Add(v) } } func (c *Consistent) Members() []string { c.RLock() defer c.RUnlock() var m []string for k := range c.members { m = append(m, k) } return m } // Get returns an element close to where name hashes to in the circle. func (c *Consistent) Get(name string) (string, error) { c.RLock() defer c.RUnlock() if len(c.circle) == 0 { return "", ErrEmptyCircle } key := c.hashKey(name) log.Println("need search --> key:",key,"servername:",name) i := c.search(key) fmt.Println(c.sortedHashes[i],c.circle[c.sortedHashes[i]]) return c.circle[c.sortedHashes[i]], nil } func (c *Consistent) search(key uint32) (i int) { f := func(x int) bool { log.Println("i",i) // 拿不到相等的 return c.sortedHashes[x] > key } i = sort.Search(len(c.sortedHashes), f) log.Println("I:",i) if i >= len(c.sortedHashes) { i = 0 } return } // GetTwo returns the two closest distinct elements to the name input in the circle. func (c *Consistent) GetTwo(name string) (string, string, error) { c.RLock() defer c.RUnlock() if len(c.circle) == 0 { return "", "", ErrEmptyCircle } //得到hashesw 值 key := c.hashKey(name) //搜索hashes i := c.search(key) //获取值 a := c.circle[c.sortedHashes[i]] //如果节点只有一个时,直接返回 if c.count == 1 { return a, "", nil } start := i var b string for i = start + 1; i != start; i++ { if i >= len(c.sortedHashes) { i = 0 } b = c.circle[c.sortedHashes[i]] //两个时候否为相同的节点,不是就返回 if b != a { break } } return a, b, nil } // GetN returns the N closest distinct elements to the name input in the circle. func (c *Consistent) GetN(name string, n int) ([]string, error) { c.RLock() defer c.RUnlock() if len(c.circle) == 0 { return nil, ErrEmptyCircle } if c.count < int64(n) { n = int(c.count) } var ( key = c.hashKey(name) i = c.search(key) start = i res = make([]string, 0, n) elem = c.circle[c.sortedHashes[i]] ) res = append(res, elem) if len(res) == n { return res, nil } for i = start + 1; i != start; i++ { if i >= len(c.sortedHashes) { i = 0 } elem = c.circle[c.sortedHashes[i]] if !sliceContainsMember(res, elem) { res = append(res, elem) } if len(res) == n { break } } return res, nil } func (c *Consistent) hashKey(key string) uint32 { // log.Println("key string:",key) if len(key) < 64 { var scratch [64]byte copy(scratch[:], key) //log.Fatal(len(key), scratch) return crc32.ChecksumIEEE(scratch[:len(key)]) } return crc32.ChecksumIEEE([]byte(key)) } // 对hash 进行排序 func (c *Consistent) updateSortedHashes() { hashes := c.sortedHashes[:0] //reallocate if we're holding on to too much (1/4th) //log.Fatal("exit test:",cap(c.sortedHashes)) if cap(c.sortedHashes)/(c.NumberOfReplicas*4) > len(c.circle) { hashes = nil } for k := range c.circle { hashes = append(hashes, k) log.Println(k) } sort.Sort(hashes) c.sortedHashes = hashes log.Println("tem hashes size :",len(hashes),len(c.sortedHashes)) } func sliceContainsMember(set []string, member string) bool { for _, m := range set { if m == member { return true } } return false } func main() { c := New() //fmt.Printf("%T", D) c.Add("redis-1") c.Add("redis-2") c.Add("redis-3") log.Fatal(c.GetN("redis-2",1)) v, ok := c.Get("redis-one") if ok == nil { for i, vv := range v { fmt.Println(i, vv) } } log.Println("members size:",len(c.members),"\tcircle size :",len(c.circle),"sortHashes:",len(c.sortedHashes),"scratch:",c.scratch) log.Println("sortHashes value:",c.sortedHashes) //log.Fatal("...") }
其中有几点不是很理解,scratch 这个东西好像没用到,还有就是在计算虚拟节点时,他是使用'>'来计算的,假设我们设置一个节点redis,那满默认回事redis|1,redis|2..,这样进行节点分布,如果获取redis时,使用redis|1进行搜索,搜索出来就不是redis|1这个虚拟节点了,可能是其他节点。还有在求近距离节点是它是按升排序进行搜索的,而不考虑左右这个方式找最近节点。
有疑问加站长微信联系(非本文作者)