在开发高并发系统时,有三把利器用来保护系统:缓存、降级和限流。那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了。
简单的并发控制
利用 channel 的缓冲设定,我们就可以来实现并发的限制。我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要)。让并发的 goroutine在执行完成后把这个 channel 里的东西给读走。这样整个并发的数量就讲控制在这个 channel的缓冲区大小上。
比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器。
chLimit := make(chan bool, 1)
然后在并发执行的地方,每创建一个新的 goroutine,都往 chLimit 里塞个东西。
for i, sleeptime := range input {
chs[i] = make(chan string, 1)
chLimit <- true
go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
}
这里通过 go 关键字并发执行的是新构造的函数。他在执行完后,会把 chLimit的缓冲区里给消费掉一个。
limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
Run(task_id, sleeptime, timeout, ch)
<-chLimit
}
这样一来,当创建的 goroutine 数量到达 chLimit 的缓冲区上限后。主 goroutine 就挂起阻塞了,直到这些 goroutine 执行完毕,消费掉了 chLimit 缓冲区中的数据,程序才会继续创建新的 goroutine 。我们并发数量限制的目的也就达到了。
例子
package main
import (
"fmt"
"time"
)
func Run(task_id, sleeptime, timeout int, ch chan string) {
ch_run := make(chan string)
go run(task_id, sleeptime, ch_run)
select {
case re := <-ch_run:
ch <- re
case <-time.After(time.Duration(timeout) * time.Second):
re := fmt.Sprintf("task id %d , timeout", task_id)
ch <- re
}
}
func run(task_id, sleeptime int, ch chan string) {
time.Sleep(time.Duration(sleeptime) * time.Second)
ch <- fmt.Sprintf("task id %d , sleep %d second", task_id, sleeptime)
return
}
func main() {
input := []int{3, 2, 1}
timeout := 2
chLimit := make(chan bool, 1)
chs := make([]chan string, len(input))
limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
Run(task_id, sleeptime, timeout, ch)
<-chLimit
}
startTime := time.Now()
fmt.Println("Multirun start")
for i, sleeptime := range input {
chs[i] = make(chan string, 1)
chLimit <- true
go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
}
for _, ch := range chs {
fmt.Println(<-ch)
}
endTime := time.Now()
fmt.Printf("Multissh finished. Process time %s. Number of task is %d", endTime.Sub(startTime), len(input))
}
运行结果:
Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 5s. Number of task is 3
如果修改并发限制为2:
chLimit := make(chan bool, 2)
运行结果:
Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 3s. Number of task is 3
使用计数器实现请求限流
限流的要求是在指定的时间间隔内,server 最多只能服务指定数量的请求。实现的原理是我们启动一个计数器,每次服务请求会把计数器加一,同时到达指定的时间间隔后会把计数器清零;这个计数器的实现代码如下所示:
type RequestLimitService struct {
Interval time.Duration
MaxCount int
Lock sync.Mutex
ReqCount int
}
func NewRequestLimitService(interval time.Duration, maxCnt int) *RequestLimitService {
reqLimit := &RequestLimitService{
Interval: interval,
MaxCount: maxCnt,
}
go func() {
ticker := time.NewTicker(interval)
for {
<-ticker.C
reqLimit.Lock.Lock()
fmt.Println("Reset Count...")
reqLimit.ReqCount = 0
reqLimit.Lock.Unlock()
}
}()
return reqLimit
}
func (reqLimit *RequestLimitService) Increase() {
reqLimit.Lock.Lock()
defer reqLimit.Lock.Unlock()
reqLimit.ReqCount += 1
}
func (reqLimit *RequestLimitService) IsAvailable() bool {
reqLimit.Lock.Lock()
defer reqLimit.Lock.Unlock()
return reqLimit.ReqCount < reqLimit.MaxCount
}
在服务请求的时候, 我们会对当前计数器和阈值进行比较,只有未超过阈值时才进行服务:
var RequestLimit = NewRequestLimitService(10 * time.Second, 5)
func helloHandler(w http.ResponseWriter, r *http.Request) {
if RequestLimit.IsAvailable() {
RequestLimit.Increase()
fmt.Println(RequestLimit.ReqCount)
io.WriteString(w, "Hello world!\n")
} else {
fmt.Println("Reach request limiting!")
io.WriteString(w, "Reach request limit!\n")
}
}
func main() {
fmt.Println("Server Started!")
http.HandleFunc("/", helloHandler)
http.ListenAndServe(":8000", nil)
}
完整代码url
使用golang官方包实现httpserver频率限制
使用golang来编写httpserver时,可以使用官方已经有实现好的包:
import(
"fmt"
"net"
"golang.org/x/net/netutil"
)
func main() {
l, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
fmt.Fatalf("Listen: %v", err)
}
defer l.Close()
l = LimitListener(l, max)
http.Serve(l, http.HandlerFunc())
//bla bla bla.................
}
源码[url] ( https://github.com/golang/net/blob/master/netutil/listen.go),基本思路就是为连接数计数,通过make chan来建立一个最大连接数的channel, 每次accept就+1,close时候就-1. 当到达最大连接数时,就等待空闲连接出来之后再accept。
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package netutil provides network utility functions, complementing the more
// common ones in the net package.
package netutil // import "golang.org/x/net/netutil"
import (
"net"
"sync"
)
// LimitListener returns a Listener that accepts at most n simultaneous
// connections from the provided Listener.
func LimitListener(l net.Listener, n int) net.Listener {
return &limitListener{
Listener: l,
sem: make(chan struct{}, n),
done: make(chan struct{}),
}
}
type limitListener struct {
net.Listener
sem chan struct{}
closeOnce sync.Once // ensures the done chan is only closed once
done chan struct{} // no values sent; closed when Close is called
}
// acquire acquires the limiting semaphore. Returns true if successfully
// accquired, false if the listener is closed and the semaphore is not
// acquired.
func (l *limitListener) acquire() bool {
select {
case <-l.done:
return false
case l.sem <- struct{}{}:
return true
}
}
func (l *limitListener) release() { <-l.sem }
func (l *limitListener) Accept() (net.Conn, error) {
//如果sem满了,就会阻塞在这
acquired := l.acquire()
// If the semaphore isn't acquired because the listener was closed, expect
// that this call to accept won't block, but immediately return an error.
c, err := l.Listener.Accept()
if err != nil {
if acquired {
l.release()
}
return nil, err
}
return &limitListenerConn{Conn: c, release: l.release}, nil
}
func (l *limitListener) Close() error {
err := l.Listener.Close()
l.closeOnce.Do(func() { close(l.done) })
return err
}
type limitListenerConn struct {
net.Conn
releaseOnce sync.Once
release func()
}
func (l *limitListenerConn) Close() error {
err := l.Conn.Close()
//close时释放占用的sem
l.releaseOnce.Do(l.release)
return err
}
使用Token Bucket(令牌桶算法)实现请求限流
在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一。
这里为大家推荐一个开源库https://github.com/didip/tollbooth,但是,如果您想要一些简单的、轻量级的或者只是想要学习的东西,实现自己的中间件来处理速率限制并不困难。今天我们就来聊聊如何实现自己的一个限流中间件
首先我们需要安装一个提供了 Token bucket (令牌桶算法)的依赖包,上面提到的toolbooth 的实现也是基于它实现的:
$ go get golang.org/x/time/rate
Demo代码的实现
package main
import (
"net/http"
"golang.org/x/time/rate"
)
var limiter = rate.NewLimiter(2, 5)
func limit(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if limiter.Allow() == false {
http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
return
}
next.ServeHTTP(w, r)
})
}
func main() {
mux := http.NewServeMux()
mux.HandleFunc("/", okHandler)
// Wrap the servemux with the limit middleware.
http.ListenAndServe(":4000", limit(mux))
}
func okHandler(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("OK"))
}
算法描述:用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中(每秒会有r个令牌放入桶中),桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;
实现
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rate provides a rate limiter.
package rate
import (
"fmt"
"math"
"sync"
"time"
"golang.org/x/net/context"
)
// Limit defines the maximum frequency of some events.
// Limit is represented as number of events per second.
// A zero Limit allows no events.
type Limit float64
// Inf is the infinite rate limit; it allows all events (even if burst is zero).
const Inf = Limit(math.MaxFloat64)
// Every converts a minimum time interval between events to a Limit.
func Every(interval time.Duration) Limit {
if interval <= 0 {
return Inf
}
return 1 / Limit(interval.Seconds())
}
// A Limiter controls how frequently events are allowed to happen.
// It implements a "token bucket" of size b, initially full and refilled
// at rate r tokens per second.
// Informally, in any large enough time interval, the Limiter limits the
// rate to r tokens per second, with a maximum burst size of b events.
// As a special case, if r == Inf (the infinite rate), b is ignored.
// See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.
//
// The zero value is a valid Limiter, but it will reject all events.
// Use NewLimiter to create non-zero Limiters.
//
// Limiter has three main methods, Allow, Reserve, and Wait.
// Most callers should use Wait.
//
// Each of the three methods consumes a single token.
// They differ in their behavior when no token is available.
// If no token is available, Allow returns false.
// If no token is available, Reserve returns a reservation for a future token
// and the amount of time the caller must wait before using it.
// If no token is available, Wait blocks until one can be obtained
// or its associated context.Context is canceled.
//
// The methods AllowN, ReserveN, and WaitN consume n tokens.
type Limiter struct {
//maximum token, token num per second
limit Limit
//burst field, max token num
burst int
mu sync.Mutex
//tokens num, change
tokens float64
// last is the last time the limiter's tokens field was updated
last time.Time
// lastEvent is the latest time of a rate-limited event (past or future)
lastEvent time.Time
}
// Limit returns the maximum overall event rate.
func (lim *Limiter) Limit() Limit {
lim.mu.Lock()
defer lim.mu.Unlock()
return lim.limit
}
// Burst returns the maximum burst size. Burst is the maximum number of tokens
// that can be consumed in a single call to Allow, Reserve, or Wait, so higher
// Burst values allow more events to happen at once.
// A zero Burst allows no events, unless limit == Inf.
func (lim *Limiter) Burst() int {
return lim.burst
}
// NewLimiter returns a new Limiter that allows events up to rate r and permits
// bursts of at most b tokens.
func NewLimiter(r Limit, b int) *Limiter {
return &Limiter{
limit: r,
burst: b,
}
}
// Allow is shorthand for AllowN(time.Now(), 1).
func (lim *Limiter) Allow() bool {
return lim.AllowN(time.Now(), 1)
}
// AllowN reports whether n events may happen at time now.
// Use this method if you intend to drop / skip events that exceed the rate limit.
// Otherwise use Reserve or Wait.
func (lim *Limiter) AllowN(now time.Time, n int) bool {
return lim.reserveN(now, n, 0).ok
}
// A Reservation holds information about events that are permitted by a Limiter to happen after a delay.
// A Reservation may be canceled, which may enable the Limiter to permit additional events.
type Reservation struct {
ok bool
lim *Limiter
tokens int
//This is the time to action
timeToAct time.Time
// This is the Limit at reservation time, it can change later.
limit Limit
}
// OK returns whether the limiter can provide the requested number of tokens
// within the maximum wait time. If OK is false, Delay returns InfDuration, and
// Cancel does nothing.
func (r *Reservation) OK() bool {
return r.ok
}
// Delay is shorthand for DelayFrom(time.Now()).
func (r *Reservation) Delay() time.Duration {
return r.DelayFrom(time.Now())
}
// InfDuration is the duration returned by Delay when a Reservation is not OK.
const InfDuration = time.Duration(1<<63 - 1)
// DelayFrom returns the duration for which the reservation holder must wait
// before taking the reserved action. Zero duration means act immediately.
// InfDuration means the limiter cannot grant the tokens requested in this
// Reservation within the maximum wait time.
func (r *Reservation) DelayFrom(now time.Time) time.Duration {
if !r.ok {
return InfDuration
}
delay := r.timeToAct.Sub(now)
if delay < 0 {
return 0
}
return delay
}
// Cancel is shorthand for CancelAt(time.Now()).
func (r *Reservation) Cancel() {
r.CancelAt(time.Now())
return
}
// CancelAt indicates that the reservation holder will not perform the reserved action
// and reverses the effects of this Reservation on the rate limit as much as possible,
// considering that other reservations may have already been made.
func (r *Reservation) CancelAt(now time.Time) {
if !r.ok {
return
}
r.lim.mu.Lock()
defer r.lim.mu.Unlock()
if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {
return
}
// calculate tokens to restore
// The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved
// after r was obtained. These tokens should not be restored.
restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct))
if restoreTokens <= 0 {
return
}
// advance time to now
now, _, tokens := r.lim.advance(now)
// calculate new number of tokens
tokens += restoreTokens
if burst := float64(r.lim.burst); tokens > burst {
tokens = burst
}
// update state
r.lim.last = now
r.lim.tokens = tokens
if r.timeToAct == r.lim.lastEvent {
prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))
if !prevEvent.Before(now) {
r.lim.lastEvent = prevEvent
}
}
return
}
// Reserve is shorthand for ReserveN(time.Now(), 1).
func (lim *Limiter) Reserve() *Reservation {
return lim.ReserveN(time.Now(), 1)
}
// ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.
// The Limiter takes this Reservation into account when allowing future events.
// ReserveN returns false if n exceeds the Limiter's burst size.
// Usage example:
// r, ok := lim.ReserveN(time.Now(), 1)
// if !ok {
// // Not allowed to act! Did you remember to set lim.burst to be > 0 ?
// }
// time.Sleep(r.Delay())
// Act()
// Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.
// If you need to respect a deadline or cancel the delay, use Wait instead.
// To drop or skip events exceeding rate limit, use Allow instead.
func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation {
r := lim.reserveN(now, n, InfDuration)
return &r
}
// Wait is shorthand for WaitN(ctx, 1).
func (lim *Limiter) Wait(ctx context.Context) (err error) {
return lim.WaitN(ctx, 1)
}
// WaitN blocks until lim permits n events to happen.
// It returns an error if n exceeds the Limiter's burst size, the Context is
// canceled, or the expected wait time exceeds the Context's Deadline.
func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) {
if n > lim.burst {
return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst)
}
// Check if ctx is already cancelled
select {
case <-ctx.Done():
return ctx.Err()
default:
}
// Determine wait limit
now := time.Now()
waitLimit := InfDuration
if deadline, ok := ctx.Deadline(); ok {
waitLimit = deadline.Sub(now)
}
// Reserve
r := lim.reserveN(now, n, waitLimit)
if !r.ok {
return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n)
}
// Wait
t := time.NewTimer(r.DelayFrom(now))
defer t.Stop()
select {
case <-t.C:
// We can proceed.
return nil
case <-ctx.Done():
// Context was canceled before we could proceed. Cancel the
// reservation, which may permit other events to proceed sooner.
r.Cancel()
return ctx.Err()
}
}
// SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).
func (lim *Limiter) SetLimit(newLimit Limit) {
lim.SetLimitAt(time.Now(), newLimit)
}
// SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated
// or underutilized by those which reserved (using Reserve or Wait) but did not yet act
// before SetLimitAt was called.
func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) {
lim.mu.Lock()
defer lim.mu.Unlock()
now, _, tokens := lim.advance(now)
lim.last = now
lim.tokens = tokens
lim.limit = newLimit
}
// reserveN is a helper method for AllowN, ReserveN, and WaitN.
// maxFutureReserve specifies the maximum reservation wait duration allowed.
// reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.
func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation {
lim.mu.Lock()
defer lim.mu.Unlock()
if lim.limit == Inf {
return Reservation{
ok: true,
lim: lim,
tokens: n,
timeToAct: now,
}
}
now, last, tokens := lim.advance(now)
// Calculate the remaining number of tokens resulting from the request.
tokens -= float64(n)
// Calculate the wait duration
var waitDuration time.Duration
if tokens < 0 {
waitDuration = lim.limit.durationFromTokens(-tokens)
}
// Decide result
ok := n <= lim.burst && waitDuration <= maxFutureReserve
// Prepare reservation
r := Reservation{
ok: ok,
lim: lim,
limit: lim.limit,
}
if ok {
r.tokens = n
r.timeToAct = now.Add(waitDuration)
}
// Update state
if ok {
lim.last = now
lim.tokens = tokens
lim.lastEvent = r.timeToAct
} else {
lim.last = last
}
return r
}
// advance calculates and returns an updated state for lim resulting from the passage of time.
// lim is not changed.
func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) {
last := lim.last
if now.Before(last) {
last = now
}
// Avoid making delta overflow below when last is very old.
maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens)
elapsed := now.Sub(last)
if elapsed > maxElapsed {
elapsed = maxElapsed
}
// Calculate the new number of tokens, due to time that passed.
delta := lim.limit.tokensFromDuration(elapsed)
tokens := lim.tokens + delta
if burst := float64(lim.burst); tokens > burst {
tokens = burst
}
return now, last, tokens
}
// durationFromTokens is a unit conversion function from the number of tokens to the duration
// of time it takes to accumulate them at a rate of limit tokens per second.
func (limit Limit) durationFromTokens(tokens float64) time.Duration {
seconds := tokens / float64(limit)
return time.Nanosecond * time.Duration(1e9*seconds)
}
// tokensFromDuration is a unit conversion function from a time duration to the number of tokens
// which could be accumulated during that duration at a rate of limit tokens per second.
func (limit Limit) tokensFromDuration(d time.Duration) float64 {
return d.Seconds() * float64(limit)
}
虽然在某些情况下使用单个全局速率限制器非常有用,但另一种常见情况是基于IP地址或API密钥等标识符为每个用户实施速率限制器。我们将使用IP地址作为标识符。简单实现代码如下:
package main
import (
"net/http"
"sync"
"time"
"golang.org/x/time/rate"
)
// Create a custom visitor struct which holds the rate limiter for each
// visitor and the last time that the visitor was seen.
type visitor struct {
limiter *rate.Limiter
lastSeen time.Time
}
// Change the the map to hold values of the type visitor.
var visitors = make(map[string]*visitor)
var mtx sync.Mutex
// Run a background goroutine to remove old entries from the visitors map.
func init() {
go cleanupVisitors()
}
func addVisitor(ip string) *rate.Limiter {
limiter := rate.NewLimiter(2, 5)
mtx.Lock()
// Include the current time when creating a new visitor.
visitors[ip] = &visitor{limiter, time.Now()}
mtx.Unlock()
return limiter
}
func getVisitor(ip string) *rate.Limiter {
mtx.Lock()
v, exists := visitors[ip]
if !exists {
mtx.Unlock()
return addVisitor(ip)
}
// Update the last seen time for the visitor.
v.lastSeen = time.Now()
mtx.Unlock()
return v.limiter
}
// Every minute check the map for visitors that haven't been seen for
// more than 3 minutes and delete the entries.
func cleanupVisitors() {
for {
time.Sleep(time.Minute)
mtx.Lock()
for ip, v := range visitors {
if time.Now().Sub(v.lastSeen) > 3*time.Minute {
delete(visitors, ip)
}
}
mtx.Unlock()
}
}
func limit(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
limiter := getVisitor(r.RemoteAddr)
if limiter.Allow() == false {
http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
return
}
next.ServeHTTP(w, r)
})
}
- 注意本文借鉴其他文章,[原文](https://blog.csdn.net/micl200110041/article/details/82013032)
有疑问加站长微信联系(非本文作者)