k8s与HPA--基于Kubernetes的事件驱动自动缩放

iyacontrol · · 1861 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

KEDA可以对事件驱动的Kubernetes工作负载进行细粒度的自动缩放(包括从零到零的自动缩放)。 KEDA充当Kubernetes Metrics服务器,允许用户使用专用的Kubernetes自定义资源定义来定义自动缩放规则。

KEDA可以在云和边缘上运行,可以与Kubernetes组件(例如Horizo​​ntal Pod Autoscaler)进行本地集成,并且没有外部依赖性。

工作原理

KEDA在Kubernetes中扮演着两个关键角色。首先,它充当代理来激活和停用部署,以在无事件的情况下从零扩展到零。其次,它充当Kubernetes指标服务器,将丰富的事件数据(例如队列长度或流滞后)暴露给水平Pod自动缩放器以推动横向扩展。然后由部署决定是否直接从源中使用事件。这样可以保留丰富的事件集成,并使完成或放弃队列消息之类的手势可以立即使用。

keda-arch.png

Event sources and scalers

KEDA有许多“scalers”,它们既可以检测是否应激活或停用部署,也可以提供特定事件源的自定义指标。今天,对以下内容提供了缩放器支持:

  • AWS CloudWatch
  • AWS Simple Queue Service
  • Azure Event Hub†
  • Azure Service Bus Queues and Topics
  • Azure Storage Queues
  • GCP PubSub
  • Kafka
  • Liiklus
  • Prometheus
  • RabbitMQ
  • Redis Lists

当然其他事件源正在增加中,如下:

规划中

  • Azure IoT Hub#214
  • Azure Storage Blobs#154
  • Azure Cosmos DB#232
  • Azure Monitor
  • Azure Durable Functions

待规划

  • AWS Kinesis
  • Kubernetes Events
  • MongoDB
  • CockroachDB
  • MQTT

ScaledObject自定义资源定义

为了使部署与事件源同步,需要部署ScaledObject自定义资源。 ScaledObjects包含有关要扩展的部署的信息,事件源的元数据(例如,连接字符串密钥,队列名称),轮询间隔和冷却时间。 ScaledObject将产生相应的自动扩展资源(HPA定义)以扩展部署。删除ScaledObjects时,将清除相应的HPA定义。

例如:

apiVersion: keda.k8s.io/v1alpha1
kind: ScaledObject
metadata:
  name: kafka-scaledobject
  namespace: default
  labels:
    deploymentName: azure-functions-deployment
spec:
  scaleTargetRef:
    deploymentName: azure-functions-deployment
  pollingInterval: 30
  triggers:
  - type: kafka
    metadata:
      # Required
      brokerList: localhost:9092
      consumerGroup: my-group       # Make sure that this consumer group name is the same one as the one that is consuming topics
      topic: test-topic
      lagThreshold: "50"

部署

可以使用helm部署,也可以yaml部署。利用yaml部署可以执行如下操作:

kubectl apply -f KedaScaleController.yaml

KedaScaleController.yaml 如下:

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: scaledobjects.keda.k8s.io
spec:
  group: keda.k8s.io
  version: v1alpha1
  names:
    kind: ScaledObject
    singular: scaledobject
    plural: scaledobjects
    shortNames:
      - sco
    categories:
      - keda
  scope: Namespaced
  additionalPrinterColumns:
    - name: Deployment
      type: string
      JSONPath: .spec.scaleTargetRef.deploymentName
    - name: Triggers
      type: string
      JSONPath: .spec.triggers[*].type
    - name: Age
      type: date
      JSONPath: .metadata.creationTimestamp
  validation:
    openAPIV3Schema:
      properties:
        spec:
          required: [triggers]
          type: object
          properties:
            scaleType:
              type: string
              enum: [deployment, job]
            pollingInterval:
              type: integer
            cooldownPeriod:
              type: integer
            minReplicaCount:
              type: integer
            maxReplicaCount:
              type: integer
            scaleTargetRef:
              required: [deploymentName]
              type: object
              properties:
                deploymentName:
                  type: string
                containerName:
                  type: string
            triggers:
              type: array
              items:
                type: object
                required: [type, metadata]
                properties:
                  type:
                    type: string
                  authenticationRef:
                    type: object
                    properties:
                      name:
                        type: string
                  metadata:
                    type: object
                    additionalProperties:
                      type: string
---
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: triggerauthentications.keda.k8s.io
spec:
  group: keda.k8s.io
  version: v1alpha1
  names:
    kind: TriggerAuthentication
    singular: triggerauthentication
    plural: triggerauthentications
    shortNames:
      - ta
      - triggerauth
    categories:
      - keda
  scope: Namespaced
---
apiVersion: v1
kind: Namespace
metadata:
  name: keda
---
kind: ServiceAccount
apiVersion: v1
metadata:
  name: keda-operator
  namespace: keda
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: keda-operator-service-account-role-binding
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
  - kind: ServiceAccount
    name: keda-operator
    namespace: keda
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: keda:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
  - kind: ServiceAccount
    name: keda-operator
    namespace: keda
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: keda-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
  - kind: ServiceAccount
    name: keda-operator
    namespace: keda
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: keda-operator
  name: keda-operator
  namespace: keda
spec:
  replicas: 1
  selector:
    matchLabels:
      app: keda-operator
  template:
    metadata:
      labels:
        app: keda-operator
      name: keda-operator
    spec:
      serviceAccountName: keda-operator
      containers:
        - name: keda-operator
          image: kedacore/keda:latest
          args:
            - /adapter
            - --secure-port=6443
            - --logtostderr=true
            - --v=2
          ports:
            - containerPort: 6443
              name: https
            - containerPort: 8080
              name: http
          volumeMounts:
            - mountPath: /tmp
              name: temp-vol
      volumes:
        - name: temp-vol
          emptyDir: {}
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: custom-metrics-resource-reader
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: custom-metrics-resource-reader
subjects:
  - kind: ServiceAccount
    name: keda-operator
    namespace: keda
---
apiVersion: v1
kind: Service
metadata:
  name: keda-operator
  namespace: keda
spec:
  ports:
    - name: https
      port: 443
      targetPort: 6443
    - name: http
      port: 80
      targetPort: 8080
  selector:
    app: keda-operator
---
apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
  name: v1beta1.external.metrics.k8s.io
spec:
  service:
    name: keda-operator
    namespace: keda
  group: external.metrics.k8s.io
  version: v1beta1
  insecureSkipTLSVerify: true
  groupPriorityMinimum: 100
  versionPriority: 100
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: custom-metrics-resource-reader
rules:
  - apiGroups:
      - ""
    resources:
      - namespaces
      - pods
      - services
      - external
    verbs:
      - get
      - list
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: keda-hpa-controller-custom-metrics
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
  - kind: ServiceAccount
    name: horizontal-pod-autoscaler
    namespace: kube-system

代码架构解读

关键代码在pkg文件夹下,如下图:
kdea-1.png

  • adapter和provider 主要实现了一个custom metrics的adapter,基本规范参照github.com/kubernetes-incubator/custom-metrics-apiserver。如果是外部metrics ,那么主要是实现GetExternalMetric和ListAllExternalMetrics两个方法即可。
  • apis 和 client 均为k8s架手架生成的。apis主要存放 crd --ScaledObject对象的定义,而client 为keda client和 informer 等。通过crd 扩展过k8s的应该对此比较熟悉。
  • controller 即为一个k8s 针对ScaledObject的控制器。实际k8s 的开发中,crd 创建了之后,必须编写对应的controller,针对crd的add,update,delete三种事件作出实际操作。
  • signals 则比较简单,封装了context.Context。
  • kubernetes 比较简单,总体思路就是根据config,创建kdea client 和kube client,供controller 使用。
  • handler 比较关键,基本上controller 中的sync 逻辑和metrics-server 提供metrics的接口 均在这里实现的。
  • scalers。就是不同事件源的实现。那么如果我们想增加一种自己的事件源,在这里实现即可。

举例说明一下,当使用客户端--kubectl 或是client-go部署一个针对deployment A 的ScaledObject crd。想根据kafaka的消息积压数目进行hpa。那么controller会监听到创建了crd,将会对新增动作做出操作。具体就是,根据crd的具体内容创建一个hpa对象,crd 的spec 内容会转换成hpa 。此时官方k8s的hpa就会通过scalers中的kafka scaler 读取kafka指定topic的消息数目,然后最终由hpa controller 做出是否扩缩的决定。

结论

KEDA 目前处于Experimental Phase 阶段。微软和红帽希望社区共同参与。

KEDA 并没有实现了自己的HPA,其实最终起作用的依旧是社区中的HPA,他只是根据crd 内容生成了HPA 对象,只不过这个metrics 是外部metrics。KEDA 主要是集成了各种事件源。


有疑问加站长微信联系(非本文作者)

本文来自:Segmentfault

感谢作者:iyacontrol

查看原文:k8s与HPA--基于Kubernetes的事件驱动自动缩放

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

1861 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传