图解Go里面的互斥锁mutex了解编程语言核心实现源码

仔仔 · · 878 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

锁实现基础概念

CAS与轮询

cas实现锁

image.png
在锁的实现中现在越来越多的采用CAS来进行,通过利用处理器的CAS指令来实现对给定变量的值交换来进行锁的获取

轮询锁

image.png
在多线程并发的情况下很有可能会有线程CAS失败,通常就会配合for循环采用轮询的方式去尝试重新获取锁

锁的公平性

image.png
锁从公平性上通常会分为公平锁和非公平锁,主要取决于在锁获取的过程中,先进行锁获取的线程是否比后续的线程更先获得锁,如果是则就是公平锁:多个线程按照获取锁的顺序依次获得锁,否则就是非公平性

饥饿与排队

锁饥饿

锁饥饿是指因为大量线程都同时进行获取锁,某些线程可能在锁的CAS过程中一直失败,从而长时间获取不到锁

排队机制

image.png
上面提到了CAS和轮询锁进行锁获取的方式,可以发现如果已经有线程获取了锁,但是在当前线程在多次轮询获取锁失败的时候,就没有必要再继续进行反复尝试浪费系统资源,通常就会采用一种排队机制,来进行排队等待

位计数

在大多数编程语言中针对实现基于CAS的锁的时候,通常都会采用一个32位的整数来进行锁状态的存储
<!--more-->

mutex实现

成员变量与模式

成员变量

在go的mutex中核心成员变量只有两个state和sema,其通过state来进行锁的计数,而通过sema来实现排队

type Mutex struct {
    state int32
    sema  uint32
}

锁模式

锁模式主要分为两种

描述 公平性
正常模式 正常模式下所有的goroutine按照FIFO的顺序进行锁获取,被唤醒的goroutine和新请求锁的goroutine同时进行锁获取,通常新请求锁的goroutine更容易获取锁
饥饿模式 饥饿模式所有尝试获取锁的goroutine进行等待排队,新请求锁的goroutine不会进行锁获取,而是加入队列尾部等待获取锁

上面可以看到其实在正常模式下,其实锁的性能是最高的如果多个goroutine进行锁获取后立马进行释放则可以避免多个线程的排队消耗
同理在切换到饥饿模式后,在进行锁获取的时候,如果满足一定的条件也会切换回正常模式,从而保证锁的高性能

锁计数

锁状态

image.png
在mutex中锁有三个标志位,其中其二进制位分别位001(mutexLocked)、010(mutexWoken)、100(mutexStarving), 注意这三者并不是互斥的关系,比如一个锁的状态可能是锁定的饥饿模式并且已经被唤醒

    mutexLocked = 1 << iota // mutex is locked
    mutexWoken
    mutexStarving

等待计数

image.png

mutex中通过低3位存储了当前mutex的三种状态,剩下的29位全部用来存储尝试正在等待获取锁的goroutine的数量

    mutexWaiterShift = iota // 3

唤醒机制

唤醒标志

image.png
唤醒标志其实就是上面说的第二位,唤醒标志主要用于标识当前尝试获取goroutine是否有正在处于唤醒状态的,记得上面公平模式下,当前正在cpu上运行的goroutine可能会先获取到锁

唤醒流程

image.png
当释放锁的时候,如果当前有goroutine正在唤醒状态,则只需要修改锁状态为释放锁,则处于woken状态的goroutine就可以直接获取锁,否则则需要唤醒一个goroutine, 并且等待这个goroutine修改state状态为mutexWoken,才退出

加锁流程

image.png

快速模式

如果当前没有goroutine加锁,则并且直接进行CAS成功,则直接获取锁成功

        // Fast path: grab unlocked mutex.
    if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
        if race.Enabled {
            race.Acquire(unsafe.Pointer(m))
        }
        return
    }

自旋与唤醒

    // 注意这里其实包含两个信息一个是如果当前已经是锁定状态,然后允许自旋iter主要是计数次数实际上只允许自旋4次
    // 其实就是在自旋然后等待别人释放锁,如果有人释放锁,则会立刻进行下面的尝试获取锁的逻辑    
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
            // !awoke 如果当前线程不处于唤醒状态
            // old&mutexWoken == 0如果当前没有其他正在唤醒的节点,就将当前节点处于唤醒的状态
            // old>>mutexWaiterShift != 0 :右移3位,如果不位0,则表明当前有正在等待的goroutine
            // atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken)设置当前状态为唤醒状态
            if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
                atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
                awoke = true
            }
            // 尝试自旋,
            runtime_doSpin()
            // 自旋计数
            iter++
        // 从新获取状态
            old = m.state
            continue
        }

更改锁状态

流程走到这里会有两种可能:
1.锁状态当前已经不是锁定状态
2.自旋超过指定的次数,不再允许自旋了

        new := old
        if old&mutexStarving == 0 {
            // 如果当前不是饥饿模式,则这里其实就可以尝试进行锁的获取了|=其实就是将锁的那个bit位设为1表示锁定状态
            new |= mutexLocked
        }
        if old&(mutexLocked|mutexStarving) != 0 {
            // 如果当前被锁定或者处于饥饿模式,则增等待一个等待计数
            new += 1 << mutexWaiterShift
        }
        if starving && old&mutexLocked != 0 {
            // 如果当前已经处于饥饿状态,并且当前锁还是被占用,则尝试进行饥饿模式的切换
            new |= mutexStarving
        }
        if awoke {
            if new&mutexWoken == 0 {
                throw("sync: inconsistent mutex state")
            }
            // awoke为true则表明当前线程在上面自旋的时候,修改mutexWoken状态成功
            // 清除唤醒标志位
            // 为什么要清除标志位呢?
            // 实际上是因为后续流程很有可能当前线程会被挂起,就需要等待其他释放锁的goroutine来唤醒
            // 但如果unlock的时候发现mutexWoken的位置不是0,则就不会去唤醒,则该线程就无法再醒来加锁
            new &^= mutexWoken
        }

加锁排队与状态转换

再加锁的时候实际上只会有一个goroutine加锁CAS成功,而其他线程则需要重新获取状态,进行上面的自旋与唤醒状态的重新计算,从而再次CAS

        if atomic.CompareAndSwapInt32(&m.state, old, new) {
            if old&(mutexLocked|mutexStarving) == 0 {
                // 如果原来的状态等于0则表明当前已经释放了锁并且也不处于饥饿模式下
                // 实际的二进制位可能是这样的 1111000, 后面三位全是0,只有记录等待goroutine的计数器可能会不为0
                // 那就表明其实
                break // locked the mutex with CAS
            }
            // 排队逻辑,如果发现waitStatrTime不为0,则表明当前线程之前已经再排队来,后面可能因为
            // unlock被唤醒,但是本次依旧没获取到锁,所以就将它移动到等待队列的头部
            queueLifo := waitStartTime != 0
            if waitStartTime == 0 {
                waitStartTime = runtime_nanotime()
            }
            // 这里就会进行排队等待其他节点进行唤醒
            runtime_SemacquireMutex(&m.sema, queueLifo)
            // 如果等待超过指定时间,则切换为饥饿模式 starving=true
            // 如果一个线程之前不是饥饿状态,并且也没超过starvationThresholdNs,则starving为false
            // 就会触发下面的状态切换
            starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
            // 重新获取状态
            old = m.state
            if old&mutexStarving != 0 { 
                // 如果发现当前已经是饥饿模式,注意饥饿模式唤醒的是第一个goroutine
                // 当前所有的goroutine都在排队等待
            // 一致性检查,
                if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
                    throw("sync: inconsistent mutex state")
                }
                // 获取当前的模式
                delta := int32(mutexLocked - 1<<mutexWaiterShift)
                if !starving || old>>mutexWaiterShift == 1 {
                    // 如果当前goroutine不是饥饿状态,就从饥饿模式切换会正常模式
                    // 就从mutexStarving状态切换出去
                    delta -= mutexStarving
                }
                // 最后进行cas操作
                atomic.AddInt32(&m.state, delta)
                break
            }
            // 重置计数
            awoke = true
            iter = 0
        } else {
            old = m.state
        }

释放锁逻辑

image.png

释放锁代码

func (m *Mutex) Unlock() {
    if race.Enabled {
        _ = m.state
        race.Release(unsafe.Pointer(m))
    }

    // 直接进行cas操作
    new := atomic.AddInt32(&m.state, -mutexLocked)
    if (new+mutexLocked)&mutexLocked == 0 {
        throw("sync: unlock of unlocked mutex")
    }
    if new&mutexStarving == 0 {
        // 如果释放锁并且不是饥饿模式
        old := new
        for {

            if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
                // 如果已经有等待者并且已经被唤醒,就直接返回
                return
            }
            // 减去一个等待计数,然后将当前模式切换成mutexWoken
            new = (old - 1<<mutexWaiterShift) | mutexWoken
            if atomic.CompareAndSwapInt32(&m.state, old, new) {
                // 唤醒一个goroutine
                runtime_Semrelease(&m.sema, false)
                return
            }
            old = m.state
        }
    } else {
        // 唤醒等待的线程
        runtime_Semrelease(&m.sema, true)
    }
}
关注公告号阅读更多源码分析文章21天大棚
更多文章关注 www.sreguide.com

有疑问加站长微信联系(非本文作者)

本文来自:Segmentfault

感谢作者:仔仔

查看原文:图解Go里面的互斥锁mutex了解编程语言核心实现源码

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

878 次点击  
加入收藏 微博
上一篇:Go语言之RWMutex
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传