golang协程池tunny源码解析

byte · · 1384 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

tunny

github地址:https://github.com/Jeffail/tunny

项目结构

image.png
tunny的项目结构非常简单,核心文件就是tunny.go与worker.go

整体分析

tunny.jpg
tunny主要是通过reqChan管道来联系pool与worker之间的关系,worker的数量与协程池的大小相等,在初始化协程池时决定;各个worker竞争地获取reqChan中的数据,然后处理,最后返回给pool;

代码详解

type Pool struct {
      queuedJobs int64
  
      ctor    func() Worker
      workers []*workerWrapper
      reqChan chan workRequest
  
      workerMut sync.Mutex
}

Pool结构体:

  • queuedJobs,这个变量代表pool当前积压的job数量
  • ctor,这个变量代表worker具体的构造函数
  • workers,这个变量代表pool实际拥有的worker
  • reqChan,这个变量是pool与所有worker进行通信的管道,所有worker与pool都使用相同的reqChan指针
  • workerMut,这个变量是在pool进行SetSize操作时使用的,防止不同协程同时对size进行操作

type Worker interface {
      // Process will synchronously perform a job and return the result.
      Process(interface{}) interface{}
  
      // BlockUntilReady is called before each job is processed and must block the
      // calling goroutine until the Worker is ready to process the next job.
      BlockUntilReady()
  
      // Interrupt is called when a job is cancelled. The worker is responsible
      // for unblocking the Process implementation.
      Interrupt()
                                                                                                                               
      // Terminate is called when a Worker is removed from the processing pool
      // and is responsible for cleaning up any held resources.
      Terminate()
  }

worker在tunny中被设计成了一个interface,因为在之后的代码中可以看到,worker可以有许多不同地实现,正如之前一篇整理的博客所说:golang编码技巧总结,我们在写代码时都应该使用interface,来面向接口编程,实现解耦;

两种worker

// closureWorker is a minimal Worker implementation that simply wraps a
  // func(interface{}) interface{}
  type closureWorker struct {
      processor func(interface{}) interface{}
  }

闭包worker,这个worker是最常用的一种worker,它主要执行初始化时赋予它的processeor函数来完成工作;

type callbackWorker struct{}
  
func (w *callbackWorker) Process(payload interface{}) interface{} {
      f, ok := payload.(func())
      if !ok {
          return ErrJobNotFunc
      }
      f()
      return nil
  }

回调worker,这种worker处理的数据必须是一个函数,然后调用这个函数;


// NewFunc creates a new Pool of workers where each worker will process using
  // the provided func.
 func NewFunc(n int, f func(interface{}) interface{}) *Pool {
      return New(n, func() Worker {
          return &closureWorker{
              processor: f,
          }   
      })  
  }

初始化协程池时需要两个参数,一个是协程池大小n,一个是希望协程池执行的函数,这个函数最终交由闭包worker,运行时由它实际处理数据;

func New(n int, ctor func() Worker) *Pool {
      p := &Pool{
          ctor:    ctor,
          reqChan: make(chan workRequest),
      }
      p.SetSize(n)
                                                                                                                               
      return p
 }

可以看到,reqChan在这时出现了,这个在之后的代码中将是连接pool与worker的核心;

SetSize会做什么呢?

func (p *Pool) SetSize(n int) {
      p.workerMut.Lock()
      defer p.workerMut.Unlock()
  
      lWorkers := len(p.workers)
      if lWorkers == n {
          return
      }                                                                                                                        
  
      // Add extra workers if N > len(workers)
      for i := lWorkers; i < n; i++ {
          p.workers = append(p.workers, newWorkerWrapper(p.reqChan, p.ctor()))
      }
  
      // Asynchronously stop all workers > N
      for i := n; i < lWorkers; i++ {
          p.workers[i].stop()
      }
      
      // Synchronously wait for all workers > N to stop
      for i := n; i < lWorkers; i++ {
          p.workers[i].join()
      }
  
      // Remove stopped workers from slice
      p.workers = p.workers[:n]
  }

首先,会对这个函数加锁,这是为了防止在多个协程同时进行SetSize操作;
其次,当worker数量小于需要SetSize的数量,则增加worker的数量;
若worker数量大于SetSize的数量,则减小worker的数量;

增加worker的数量是如何增加呢?newWorkerWrapper函数有很多值得关注的地方,值得注意的是,pool将它的reqChan传给了这个函数,也就是传给了worker;

func newWorkerWrapper(
      reqChan chan<- workRequest,
      worker Worker,
  ) *workerWrapper {
      w := workerWrapper{                                                                                                      
          worker:        worker,
          interruptChan: make(chan struct{}),
          reqChan:       reqChan,
          closeChan:     make(chan struct{}),
          closedChan:    make(chan struct{}),
      }
  
      go w.run()
  
      return &w
 }

可以看到,在调用初始化newWorkerWrapper后,go了一个协程,进行w.run()操作,worker在这里是调用的之前传入的闭包worker的构造函数生成的,因此这里的worker是闭包worker;

func (w *workerWrapper) run() {
      jobChan, retChan := make(chan interface{}), make(chan interface{})
      defer func() {
          w.worker.Terminate()
          close(retChan)
          close(w.closedChan)                                                                                                  
      }()
  
      for {
          // NOTE: Blocking here will prevent the worker from closing down.
          w.worker.BlockUntilReady()
          select {
          case w.reqChan <- workRequest{
              jobChan:       jobChan,
              retChan:       retChan,
              interruptFunc: w.interrupt,
          }:
              select {
              case payload := <-jobChan:
                  result := w.worker.Process(payload)
                  select {
                  case retChan <- result:
                  case <-w.interruptChan:
                      w.interruptChan = make(chan struct{})
                  }
              case _, _ = <-w.interruptChan:
                  w.interruptChan = make(chan struct{})
              }                                                                                                                
          case <-w.closeChan:
              return
          }
      }
  }

解读这个run函数,这是整个worker的核心;
首先,能看到一个大的for循环,里面嵌套了select;
一进入select,会无脑往reqChan里传入workRequest,这时需要与pool的接收函数对应起来看:

func (p *Pool) Process(payload interface{}) interface{} {
      atomic.AddInt64(&p.queuedJobs, 1)
  
      request, open := <-p.reqChan
      if !open {
          panic(ErrPoolNotRunning)
      }   
  
      request.jobChan <- payload
  
      payload, open = <-request.retChan
      if !open {
          panic(ErrWorkerClosed)
      }   
  
      atomic.AddInt64(&p.queuedJobs, -1)                                                                                       
      return payload
  }

可以发现,因为worker会无脑往reqChan管道里传入workRequest,因此pool一定会取到塞入的值交给request变量,payload是实际处理的数据,pool将其塞入workRequest的jobChan中,之后阻塞等待从retChan取得结果,由于这个jobChan与worker的jobChan是同一个指针,因此payload能在worker的

select {
              case payload := <-jobChan:
                  result := w.worker.Process(payload)
                  select {
                  case retChan <- result:
                  case <-w.interruptChan:
                      w.interruptChan = make(chan struct{})
                  }
                  ...

case语句中被取到,然后进行处理,处理完后进入下一个select语句,无脑将result塞到retChan中;由于worker的retChan与pool的retChan是同一个指针,因此pool取到了retChan的结果,将其返回;

多个worker的情况,则会竞争从reqChan取数据,但是总能保证只有size个worker在工作,达到了限制协程数量的目的。


有疑问加站长微信联系(非本文作者)

本文来自:Segmentfault

感谢作者:byte

查看原文:golang协程池tunny源码解析

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

1384 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传