青蛙跳台阶 Golang 与 Python 最简解法

张凯强 · · 692 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

「剑指Offer」里的经典题目,近期群里聊到这题,特来复习一波。

题目

一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

思路

首先跳到 n 级台阶可以分解为两种情况:

  1. 之前跳到 n-1 级台阶,然后再跳 1 级到达 n 级;
  2. 之前跳到 n-2 级台阶,然后再跳 2 级到达 n 级;

因此 n 级跳法数量,等于这两种情况之和。
F(n) = F(n-1) + F(n-2)

同理可继续推导:
F(n-1) = F(n-2) + F(n-3)
F(n-2) = F(n-3) + F(n-4)
...
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 1

可见这是斐波那契数列,数列中从第三个数开始,每个数都是前两个数之和。那么只需从 F(0) + F(1) = F(2) 开始计算,一直加到 F(n) 即可得出结果。

解题

Golang 版

func JumpFloor(n int) int {
    a, b := 1, 1
    for ; n > 0; n-- {
        a, b = b, a + b
    }
    return a
}

Python 版

def jump_floor(n):
    a, b = 1, 1
    for _ in range(n):
        a, b = b, a + b
    return a

有疑问加站长微信联系(非本文作者)

本文来自:Segmentfault

感谢作者:张凯强

查看原文:青蛙跳台阶 Golang 与 Python 最简解法

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

692 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传