golang 分析调试高阶技巧

奇伢云存储 · · 588 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

layout: post
title: "golang 调试高阶技巧"
date: 2020-6-03 1:44:09 +0800
categories: golang GC 垃圾回收


  • golang 高阶调试
    • Golang tools
      • nm
      • compile
      • objdump
      • pprof
      • trace
    • 单元测试
      • 执行单元测试
        • go test 运行
        • 编译,运行
      • 统计代码覆盖率
    • 程序 Debug
      • dlv 调试用法
        • 调试二进制
        • 调试进程
        • 调试 core 文件
        • 调试常用语法
          • 系统整理
          • 应用举例
      • gdb 调试
    • 小技巧
      • 不知道怎么断点函数?
      • 不知道调用上下文?
      • 不知道怎么开启 pprof ?
      • 为什么有时候单点调试的时候,总是非预期的执行代码?
    • 总结

golang 高阶调试

本文专注 golang debug 的一些技巧应用,以及相关工具的实用用法,再也不用怕 golang 怎么调试。golang 作为一门现代化语音,出生的时候就自带完整的 debug 手段:

  • golang tools 是直接集成在语言工具里,支持内存分析,cpu分析,阻塞锁分析等;
  • delve,gdb 作为最常用的 debug 工具,让你能够更深入的进入程序调试;
    • delve 当前是最友好的 golang 调试程序,ide 调试其实也是调用 dlv 而已,比如 goland;
  • 单元测试的设计深入到语言设计级别,可以非常方便执行单元测试并且生成代码覆盖率;

Golang tools

golang 从语言原生层面就集成了大量的实用工具,这些都是 Robert Griesemer, Rob Pike, Ken Thompson 这几位大神经验沉淀下的精华。你安装好 golang 之后,执行 go tool 就能看到内置支持的所有工具了。

root@ubuntu:~# go tool
addr2line
asm
buildid
cgo
compile
cover
dist
doc
fix
link
nm
objdump
pack
pprof
test2json
trace
vet

我这里专注挑选几个 debug 常用的:

  • nm:查看符号表(等同于系统 nm 命令)
  • objdump:反汇编工具,分析二进制文件(等同于系统 objdump 命令)
  • pprof:指标,性能分析工具
  • cover:生成代码覆盖率
  • trace:采样一段时间,指标跟踪分析工具
  • compile:代码汇编

nm

查看符号表的命令,等同于系统的 nm 命令,非常有用。在断点的时候,如果你不知道断点的函数符号,那么用这个命令查一下就知道了(命令处理的是二进制程序文件)。

# exmple 为你编译的二进制文件
go tool nm ./example

第一列是地址,第二列是类型,第三列是符号:

[图片上传失败...(image-1c9b7a-1594910164396)]

compile

汇编某个文件

go tool compile -N -l -S example.go

你就能看到你 golang 语言对应的汇编代码了(注意了,命令处理的是 golang 代码文本),酷。

objdump

反汇编二进制的工具,等同于系统 objdump(注意了,命令解析的是二进制格式的程序文件)。

go tool objdump example.o
go tool objdump -s DoFunc example.o  // 反汇编具体函数

汇编代码这个东西在 90% 的场景可能都用不上,但是如果你处理过 c 的程序,在某些特殊场景,通过反汇编一段逻辑来推断应用程序行为将是你唯一的出路。因为线上的代码一般都是会开启编译优化,所以这里会导致你的代码对不上。再者,线上不可能让你随意 attach 进程,很多时候都是出 core 了,你就只有一个 core 文件去排查。

pprof

pprof 支持四种类型的分析:

  • CPU :CPU 分析,采样消耗 cpu 的调用,这个一般用来定位排查程序里耗费计算资源的地方;
  • Memroy :内存分析,一般用来排查内存占用,内存泄露等问题;
  • Block :阻塞分析,会采样程序里阻塞的调用情况;
  • Mutex :互斥锁分析,采样互斥锁的竞争情况;

我们这里详细以内存占用分析举例(其他的类似),pprof 这个是内存分析神器。基本上,golang 有了这个东西,99% 的内存问题(比如内存泄露,内存占用过大等等)都是可以非常快的定位出来的。首先,对于 golang 的内存分析(或者其他的锁消耗,cpu 消耗)我们明确几个重要的点:

  • golang 内存 pprof 是采样的,每 512KB 采样一次;
  • golang 的内存采样的是堆栈路径,而不是类型信息;
  • golang 的内存采样入口一定是通过mProf_MallocmProf_Free 这两个函数。所以,如果是 cgo 分配的内存,那么是没有机会调用到这两个函数的,所以如果是 cgo 导致的内存问题,go tool pprof 是分析不出来的;

详细原理,可以复习另一篇文章:内存分析;

分析的形式有两种:

  1. 如果是 net/http/pporf 方式开启的,那么可以直接在控制台上输入,浏览器就能看;
  2. 另一种方式是先把信息 dump 到本地文件,然后用 go tool 去分析(我们以这个举例,因为这种方式才是生产环境通用的方式)
# 查看累计分配占用
go tool pprof -alloc_space ./29075_20190523_154406_heap
# 查看当前的分配占用
go tool pprof -inuse_space ./29075_20190523_154406_allocs

你也可以不指定类型,直接 go tool pprof ./xxx ,进入分析之后,调用 o 选项,指定类型:

我写了一个 demo 程序,然后 dump 出了一份 heap 的 pprof 采样文件,我们先通过这个 pprof 得出一些结论,最后我再贴出源代码,再品一品。

go tool pprof ./29075_20190523_154406_heap
(pprof) o              
...          
  sample_index              = inuse_space          //: [alloc_objects | alloc_space | inuse_objects | inuse_space]
...       
(pprof) alloc_space
(pprof) top
Showing nodes accounting for 290MB, 100% of 290MB total
      flat  flat%   sum%        cum   cum%
     140MB 48.28% 48.28%      140MB 48.28%  main.funcA (inline)
     100MB 34.48% 82.76%      190MB 65.52%  main.funcB (inline)
      50MB 17.24%   100%      140MB 48.28%  main.funcC (inline)
         0     0%   100%      290MB   100%  main.main
         0     0%   100%      290MB   100%  runtime.main

这个 top 信息表明了这么几点信息:

  • main.funcA 这个函数现场分配了 140M 的内存,main.funcB 这个函数现场分配了 100M 内存,main.funcC 现场分配了 50M 内存;
    • 现场的意思:纯粹自己函数直接分配的,而不是调用别的函数分配的;
    • 这些信息通过 flat 得知;
  • main.funcA 分配的 140M 内存纯粹是自己分配的,没有调用别的函数分配过内存;
    • 这个信息通过 main.funcA flat 和 cum 都为 140 M 得出;
  • main.funcB 自己分配了 100MB,并且还调用了别的函数,别的函数里面涉及了 90M 的内存分配;
    • 这个信息通过 main.funcB flat 和 cum 分别为 100 M,190M 得出;
  • main.funcC 自己分配了 50MB,并且还调用了别的函数,别的函数里面涉及了 90M 的内存分配;
    • 这个信息通过 main.funcC flat 和 cum 分别为 50 M,140 M 得出;
  • main.main :所有分配内存的函数调用都是走这个函数出去的。main 函数本身没有函数分配,但是他调用的函数分配了 290M;

demo 的源代码:

package main

import (
    "net/http"
    _ "net/http/pprof"
)

func funcA() []byte {
    a := make([]byte, 10*1024*1024)
    return a
}

func funcB() ([]byte, []byte) {
    a := make([]byte, 10*1024*1024)
    b := funcA()
    return a, b
}

func funcC() ([]byte, []byte, []byte) {
    a := make([]byte, 10*1024*1024)
    b, c := funcB()
    return a, b, c
}

func main() {
    for i := 0; i < 5; i++ {
        funcA()
        funcB()
        funcC()
    }

    http.ListenAndServe("0.0.0.0:9999", nil)
}

dump 命令

curl -sS 'http://127.0.0.1:9999/debug/pprof/heap?seconds=5' -o heap.pporf

对照着代码,再品一品。

trace

程序 trace 调试

go tool trace -http=":6060" ./ssd_336959_20190704_105540_trace

trace 这个命令允许你跟踪采集一段时间的信息,然后 dump 成文件,最后调用 go tool trace 分析 dump 文件,并且以 web 的形式打开。

单元测试

单元测试的重要性就不再论述。golang 里面 _test.go 结尾的文件认为是测试文件,golang 作为现代化的语言,语言工具层面支持单元测试。

执行单元测试

执行单元测试有两种方式:

  • go test 直接运行,这个是最简单的;
  • 先编译测试文件,再运行。这种方式更灵活;

go test 运行

// 直接在你项目目录里运行 go test .
go test .
// 指定运行函数
go test -run=TestPutAndGetKeyValue
// 打印详细信息
go test -v

编译,运行

本质上,golang 跑单测是先编译 *_test.go 文件,编译成二进制后,再运行这个二进制文件。你执行 go test 的时候,工具帮你做好了,这些动作其实也是可以拆开来自己做的。

编译生成单元测试可执行文件:

// 先编译出 .test 文件
$ go test -c 

// 指定跑某一个文件
$ ./raftexample.test -test.timeout=10m0s -test.v=true -test.run=TestPutAndGetKeyValue

这种方式通常会出现在以下几种场景:

  1. 这台机器上编译,另一个地方跑单测;
  2. debug 单测程序;

统计代码覆盖率

golang 的代码覆盖率是基于单测的,由单测作为出发点,来看你的业务代码覆盖率。

操作很简单:

  1. 加一个 -coverprofile 的参数,声明在跑单测的时候,记录代码覆盖率;
  2. 使用 go tool cover 命令分析,得出覆盖率报告;
go test -coverprofile=coverage.out
go tool cover -func=coverage.out

类似如下:

root@ubuntu:~/opensource/readcode-etcd-master/src/go.etcd.io/etcd/contrib/raftexample# go tool cover -func=coverage.out
go.etcd.io/etcd/v3/contrib/raftexample/httpapi.go:33:   ServeHTTP       25.0%
go.etcd.io/etcd/v3/contrib/raftexample/httpapi.go:108:  serveHttpKVAPI      0.0%
go.etcd.io/etcd/v3/contrib/raftexample/kvstore.go:41:   newKVStore      100.0%
go.etcd.io/etcd/v3/contrib/raftexample/kvstore.go:50:   Lookup          100.0%
go.etcd.io/etcd/v3/contrib/raftexample/kvstore.go:57:   Propose         75.0%
go.etcd.io/etcd/v3/contrib/raftexample/kvstore.go:71:   readCommits     55.0%
go.etcd.io/etcd/v3/contrib/raftexample/kvstore.go:107:  getSnapshot     100.0%
go.etcd.io/etcd/v3/contrib/raftexample/kvstore.go:113:  recoverFromSnapshot 85.7%
go.etcd.io/etcd/v3/contrib/raftexample/listener.go:30:  newStoppableListener    75.0%
go.etcd.io/etcd/v3/contrib/raftexample/listener.go:38:  Accept          92.9%
go.etcd.io/etcd/v3/contrib/raftexample/main.go:24:  main            0.0%
total:                          (statements)        57.1%

这样的话,你就知道每个函数的代码覆盖率。

程序 Debug

程序的调试主要由两个工具:

  1. dlv
  2. gdb

这里推荐 dlv,因为 gdb 功能实在是有限,gdb 不理解 golang 的业务类型和协程。但是 gdb 有一个功能是无法替代的,就是 gcore 的功能。

dlv 调试用法

调试二进制

dlv exec <path/to/binary> [flags]

举例:

dlv exec ./example

dlv 调试二进制,并带参数

dlv exec ./example -- --audit=./d

调试进程

dlv attach ${pid} [executable] [flags]

进程号是必选的。

举例:

dlv attach 12808 ./example

调试 core 文件

dlv 调试core文件;并且标准输出导出到文件

dlv core <executable> <core> [flags]

dlv core ./example core.277282

调试常用语法

系统整理

程序运行

  1. call :call 函数(注意了,这个会导致整个程序运行的)
  2. continue :往下运行
  3. next :单步调试
  4. restart :重启
  5. step :单步调试,某个函数
  6. step-instruction :单步调试某个汇编指令
  7. stepout :从当前函数跳出

断点相关

  1. break (alias: b) :设置断点
  2. breakpoints (alias: bp) :打印所有的断点信息
  3. clear :清理断点
  4. clearall :清理所有的断点
  5. condition (alias: cond) :设置条件断点
  6. on :设置一段命令,当断点命中的时候
  7. trace (alias: t) :设置一个跟踪点,这个跟踪点也是一个断点,只不过运行道德时候不会断住程序,只是打印一行信息,这个命令在某些场景是很有用的,比如你断住程序就会影响逻辑(业务有超时),而你仅仅是想打印某个变量而已,那么用这种类型的断点就行;;

信息打印

  • args : 打印程序的传参
  • examinemem (alias: x) :这个是神器,解析内存用的,和 gdb 的 x 命令一样;
  • locals :打印本地变量
  • print (alias: p) :打印一个表达式,或者变量
  • regs :打印寄存器的信息
  • set :set 赋值
  • vars :打印全局变量(包变量)
  • whatis :打印类型信息

协程相关

  • goroutine (alias: gr) :打印某个特定协程的信息
  • goroutines (alias: grs) :列举所有的协程
  • thread (alias: tr) :切换到某个线程
  • threads :打印所有的线程信息

栈相关

  • deferred :在 defer 函数上下文里执行命令
  • down :上堆栈
  • frame :跳到某个具体的堆栈
  • stack (alias: bt) :打印堆栈信息
  • up :下堆栈

其他命令

  • config :配置变更
  • disassemble (alias: disass) :反汇编
  • edit (alias: ed) :略
  • exit (alias: quit | q) :略
  • funcs :打印所有函数符号
  • libraries :打印所有加载的动态库
  • list (alias: ls | l) :显示源码
  • source :加载命令
  • sources :打印源码
  • types :打印所有类型信息

以上就是完整的 dlv 的支持的命令,从这个来看,是完全满足我们的调试需求的(有的只适用于开发调试环节,比如线上的程序不可能让你随意单步调试的,有的使用于线上生产环节)。

应用举例

打印全局变量

(dlv) vars

这个非常有用,帮助你看一些全局变量。

条件断点

# 先断点
(dlv) b 

# 查看断点信息
(dlv) bp

# 然后定制条件
(dlv) condition 2 i==2 && j==7 && z==32

查看堆栈

# 展示所有堆栈
(dlv) goroutines
# 所有堆栈展开
(dlv) goroutines -t

解析内存

(dlv) x -fmt hex -len 20 0xc00008af38

x 命令和 gdb 的 x 是一样的。

gdb 调试

gdb 对 golang 的调试支持是通过一个 python 脚本文件 src/runtime/runtime-gdb.py 来扩展的,所以功能非常有限。gdb 只能做到最基本的变量打印,却理解不了 golang 的一些特殊类型,比如 channel,map,slice 等,gdb 原生是无法调适 goroutine 协程的,因为这个是用户态的调度单位,gdb 只能理解线程。所以只能通过 python 脚本的扩展,把协程结构按照链表输出出来,支持的命令:

[图片上传失败...(image-c8e3d1-1594910164394)]

gdb当前只支持6个命令:

3个 cmd 命令

  1. info goroutines;打印所有的goroutines
  2. goroutine ${id} bt;打印一个goroutine的堆栈
  3. iface;打印静态或者动态的接口类型

3个函数

  1. len;打印string,slices,map,channels 这四种类型的长度
  2. cap;打印slices,channels 这两种类型的cap
  3. dtype;强制转换接口到动态类型。

打印全局变量 (注意单引号)

(gdb) p 'runtime.firstmoduledata'

由于 gdb 不理解 golang 的一些类型系统,所以调试打印的时候经常打印不出来,这个要注意下。

打印数组变量长度

(gdb) p $len(xxx)

所以,我一般只用 gdb 来 gcore 而已。

小技巧

不知道怎么断点函数?

有时候不知道怎么断点函数:可以通过nm查询下,然后再断点,就一定能断到了。

[图片上传失败...(image-f2bd4b-1594910164394)]

[图片上传失败...(image-e94d0b-1594910164394)]

不知道调用上下文?

在你的代码里添加一行:

debug.PrintStack()

这样就能当前代码位置的堆栈给打印出来,这样你就直到怎么函数的调用路径了。

不知道怎么开启 pprof ?

pprof 功能有两种开启方式,对应两种包:

  • net/http/pprof : 使用在 web 服务器的场景;
  • runtime/pprof :使用在非服务器应用程序的场景;

这两个本质上是一致的,net/http/pporf 也只是在 runtime/pprof 上的一层 web 封装。

net/http/pprof 方式

import _ "net/http/pprof"

runtime/pprof 方式

这种通常用于程序调优的场景,程序只是一个应用程序,跑一次就结束,你想找到瓶颈点,那么通常会使用到这个方式。

    // cpu pprof 文件路径
    f, err := os.Create("cpufile.pprof")
    if err != nil {
        log.Fatal(err)
    }
    // 开启 cpu pprof
    pprof.StartCPUProfile(f)
    defer pprof.StopCPUProfile()

为什么有时候单点调试的时候,总是非预期的执行代码?

这种情况一般是被编译器优化了,比如函数内联了,编译出的二进制删减了无效逻辑、无效参数。这种情况就会导致你 dlv 单步调试的时候,总是非预期的执行,或者打印某些变量打印不出来。这种情况解决方法就是:禁止编译优化。

go build -gcflags "-N -l"

总结

该篇文章系统的分享了 golang 程序调试的技巧和用法:

  1. 语言工具包里内置 tool 工具,支持汇编,反汇编,pprof 分析,符号表查询等实用功能;
  2. 语言工具包集成单元测试,代码覆盖率依赖于单元测试的触发;
  3. 常用 dlv/gdb 这两个工具作为大杀器,可以分析二进制,进程,core 文件;

坚持思考,方向比努力更重要。微信公众号关注我:奇伢云存储

扫码_搜索联合传播样式-白色版.png

有疑问加站长微信联系(非本文作者)

本文来自:简书

感谢作者:奇伢云存储

查看原文:golang 分析调试高阶技巧

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:1006366459

588 次点击  
加入收藏 微博
被以下专栏收入,发现更多相似内容
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传