Go 每日一库之 mapstructure

darjun · · 690 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

简介

mapstructure用于将通用的map[string]interface{}解码到对应的 Go 结构体中,或者执行相反的操作。很多时候,解析来自多种源头的数据流时,我们一般事先并不知道他们对应的具体类型。只有读取到一些字段之后才能做出判断。这时,我们可以先使用标准的encoding/json库将数据解码为map[string]interface{}类型,然后根据标识字段利用mapstructure库转为相应的 Go 结构体以便使用。

快速使用

本文代码采用 Go Modules。

首先创建目录并初始化:

$ mkdir mapstructure && cd mapstructure

$ go mod init github.com/darjun/go-daily-lib/mapstructure

下载mapstructure库:

$ go get github.com/mitchellh/mapstructure

使用:

package main

import (
  "encoding/json"
  "fmt"
  "log"

  "github.com/mitchellh/mapstructure"
)

type Person struct {
  Name string
  Age  int
  Job  string
}

type Cat struct {
  Name  string
  Age   int
  Breed string
}

func main() {
  datas := []string{`
    { 
      "type": "person",
      "name":"dj",
      "age":18,
      "job": "programmer"
    }
  `,
    `
    {
      "type": "cat",
      "name": "kitty",
      "age": 1,
      "breed": "Ragdoll"
    }
  `,
  }

  for _, data := range datas {
    var m map[string]interface{}
    err := json.Unmarshal([]byte(data), &m)
    if err != nil {
      log.Fatal(err)
    }

    switch m["type"].(string) {
    case "person":
      var p Person
      mapstructure.Decode(m, &p)
      fmt.Println("person", p)

    case "cat":
      var cat Cat
      mapstructure.Decode(m, &cat)
      fmt.Println("cat", cat)
    }
  }
}

运行结果:

$ go run main.go
person {dj 18 programmer}
cat {kitty 1 Ragdoll}

我们定义了两个结构体PersonCat,他们的字段有些许不同。现在,我们约定通信的 JSON 串中有一个type字段。当type的值为person时,该 JSON 串表示的是Person类型的数据。当type的值为cat时,该 JSON 串表示的是Cat类型的数据。

上面代码中,我们先用json.Unmarshal将字节流解码为map[string]interface{}类型。然后读取里面的type字段。根据type字段的值,再使用mapstructure.Decode将该 JSON 串分别解码为PersonCat类型的值,并输出。

实际上,Google Protobuf 通常也使用这种方式。在协议中添加消息 ID 或全限定消息名。接收方收到数据后,先读取协议 ID 或全限定消息名。然后调用 Protobuf 的解码方法将其解码为对应的Message结构。从这个角度来看,mapstructure也可以用于网络消息解码,如果你不考虑性能的话????。

字段标签

默认情况下,mapstructure使用结构体中字段的名称做这个映射,例如我们的结构体有一个Name字段,mapstructure解码时会在map[string]interface{}中查找键名name。注意,这里的name是大小写不敏感的!

type Person struct {
  Name string
}

当然,我们也可以指定映射的字段名。为了做到这一点,我们需要为字段设置mapstructure标签。例如下面使用username代替上例中的name

type Person struct {
  Name string `mapstructure:"username"`
}

看示例:

type Person struct {
  Name string `mapstructure:"username"`
  Age  int
  Job  string
}

type Cat struct {
  Name  string
  Age   int
  Breed string
}

func main() {
  datas := []string{`
    { 
      "type": "person",
      "username":"dj",
      "age":18,
      "job": "programmer"
    }
  `,
    `
    {
      "type": "cat",
      "name": "kitty",
      "Age": 1,
      "breed": "Ragdoll"
    }
  `,
    `
    {
      "type": "cat",
      "Name": "rooooose",
      "age": 2,
      "breed": "shorthair"
    }
  `,
  }

  for _, data := range datas {
    var m map[string]interface{}
    err := json.Unmarshal([]byte(data), &m)
    if err != nil {
      log.Fatal(err)
    }

    switch m["type"].(string) {
    case "person":
      var p Person
      mapstructure.Decode(m, &p)
      fmt.Println("person", p)

    case "cat":
      var cat Cat
      mapstructure.Decode(m, &cat)
      fmt.Println("cat", cat)
    }
  }
}

上面代码中,我们使用标签mapstructure:"username"PersonName字段映射为username,在 JSON 串中我们需要设置username才能正确解析。另外,注意到,我们将第二个 JSON 串中的Age和第三个 JSON 串中的Name首字母大写了,但是并没有影响解码结果。mapstructure处理字段映射是大小写不敏感的。

内嵌结构

结构体可以任意嵌套,嵌套的结构被认为是拥有该结构体名字的另一个字段。例如,下面两种Friend的定义方式对于mapstructure是一样的:

type Person struct {
  Name string
}

// 方式一
type Friend struct {
  Person
}

// 方式二
type Friend struct {
  Person Person
}

为了正确解码,Person结构的数据要在person键下:

map[string]interface{} {
  "person": map[string]interface{}{"name": "dj"},
}

我们也可以设置mapstructure:",squash"将该结构体的字段提到父结构中:

type Friend struct {
  Person `mapstructure:",squash"`
}

这样只需要这样的 JSON 串,无效嵌套person键:

map[string]interface{}{
  "name": "dj",
}

看示例:

type Person struct {
  Name string
}

type Friend1 struct {
  Person
}

type Friend2 struct {
  Person `mapstructure:",squash"`
}

func main() {
  datas := []string{`
    { 
      "type": "friend1",
      "person": {
        "name":"dj"
      }
    }
  `,
    `
    {
      "type": "friend2",
      "name": "dj2"
    }
  `,
  }

  for _, data := range datas {
    var m map[string]interface{}
    err := json.Unmarshal([]byte(data), &m)
    if err != nil {
      log.Fatal(err)
    }

    switch m["type"].(string) {
    case "friend1":
      var f1 Friend1
      mapstructure.Decode(m, &f1)
      fmt.Println("friend1", f1)

    case "friend2":
      var f2 Friend2
      mapstructure.Decode(m, &f2)
      fmt.Println("friend2", f2)
    }
  }
}

注意对比Friend1Friend2使用的 JSON 串的不同。

另外需要注意一点,如果父结构体中有同名的字段,那么mapstructure会将JSON 中对应的值同时设置到这两个字段中,即这两个字段有相同的值。

未映射的值

如果源数据中有未映射的值(即结构体中无对应的字段),mapstructure默认会忽略它。

我们可以在结构体中定义一个字段,为其设置mapstructure:",remain"标签。这样未映射的值就会添加到这个字段中。注意,这个字段的类型只能为map[string]interface{}map[interface{}]interface{}

看示例:

type Person struct {
  Name  string
  Age   int
  Job   string
  Other map[string]interface{} `mapstructure:",remain"`
}

func main() {
  data := `
    { 
      "name": "dj",
      "age":18,
      "job":"programmer",
      "height":"1.8m",
      "handsome": true
    }
  `

  var m map[string]interface{}
  err := json.Unmarshal([]byte(data), &m)
  if err != nil {
    log.Fatal(err)
  }

  var p Person
  mapstructure.Decode(m, &p)
  fmt.Println("other", p.Other)
}

上面代码中,我们为结构体定义了一个Other字段,用于保存未映射的键值。输出结果:

other map[handsome:true height:1.8m]

逆向转换

前面我们都是将map[string]interface{}解码到 Go 结构体中。mapstructure当然也可以将 Go 结构体反向解码为map[string]interface{}。在反向解码时,我们可以为某些字段设置mapstructure:",omitempty"。这样当这些字段为默认值时,就不会出现在结构的map[string]interface{}中:

type Person struct {
  Name string
  Age  int
  Job  string `mapstructure:",omitempty"`
}

func main() {
  p := &Person{
    Name: "dj",
    Age:  18,
  }

  var m map[string]interface{}
  mapstructure.Decode(p, &m)

  data, _ := json.Marshal(m)
  fmt.Println(string(data))
}

上面代码中,我们为Job字段设置了mapstructure:",omitempty",且对象pJob字段未设置。运行结果:

$ go run main.go 
{"Age":18,"Name":"dj"}

Metadata

解码时会产生一些有用的信息,mapstructure可以使用Metadata收集这些信息。Metadata结构如下:

// mapstructure.go
type Metadata struct {
  Keys   []string
  Unused []string
}

Metadata只有两个导出字段:

  • Keys:解码成功的键名;
  • Unused:在源数据中存在,但是目标结构中不存在的键名。

为了收集这些数据,我们需要使用DecodeMetadata来代替Decode方法:

type Person struct {
  Name string
  Age  int
}

func main() {
  m := map[string]interface{}{
    "name": "dj",
    "age":  18,
    "job":  "programmer",
  }

  var p Person
  var metadata mapstructure.Metadata
  mapstructure.DecodeMetadata(m, &p, &metadata)

  fmt.Printf("keys:%#v unused:%#v\n", metadata.Keys, metadata.Unused)
}

先定义一个Metadata结构,传入DecodeMetadata收集解码的信息。运行结果:

$ go run main.go 
keys:[]string{"Name", "Age"} unused:[]string{"job"}

错误处理

mapstructure执行转换的过程中不可避免地会产生错误,例如 JSON 中某个键的类型与对应 Go 结构体中的字段类型不一致。Decode/DecodeMetadata会返回这些错误:

type Person struct {
  Name   string
  Age    int
  Emails []string
}

func main() {
  m := map[string]interface{}{
    "name":   123,
    "age":    "bad value",
    "emails": []int{1, 2, 3},
  }

  var p Person
  err := mapstructure.Decode(m, &p)
  if err != nil {
    fmt.Println(err.Error())
  }
}

上面代码中,结构体中Person中字段Namestring类型,但输入中nameint类型;字段Ageint类型,但输入中agestring类型;字段Emails[]string类型,但输入中emails[]int类型。故Decode返回错误。运行结果:

$ go run main.go 
5 error(s) decoding:

* 'Age' expected type 'int', got unconvertible type 'string'
* 'Emails[0]' expected type 'string', got unconvertible type 'int'
* 'Emails[1]' expected type 'string', got unconvertible type 'int'
* 'Emails[2]' expected type 'string', got unconvertible type 'int'
* 'Name' expected type 'string', got unconvertible type 'int'

从错误信息中很容易看出哪里出错了。

弱类型输入

有时候,我们并不想对结构体字段类型和map[string]interface{}的对应键值做强类型一致的校验。这时可以使用WeakDecode/WeakDecodeMetadata方法,它们会尝试做类型转换:

type Person struct {
  Name   string
  Age    int
  Emails []string
}

func main() {
  m := map[string]interface{}{
    "name":   123,
    "age":    "18",
    "emails": []int{1, 2, 3},
  }

  var p Person
  err := mapstructure.WeakDecode(m, &p)
  if err == nil {
    fmt.Println("person:", p)
  } else {
    fmt.Println(err.Error())
  }
}

虽然键name对应的值123int类型,但是在WeakDecode中会将其转换为string类型以匹配Person.Name字段的类型。同样的,age的值"18"string类型,在WeakDecode中会将其转换为int类型以匹配Person.Age字段的类型。
需要注意一点,如果类型转换失败了,WeakDecode同样会返回错误。例如将上例中的age设置为"bad value",它就不能转为int类型,故而返回错误。

解码器

除了上面介绍的方法外,mapstructure还提供了更灵活的解码器(Decoder)。可以通过配置DecoderConfig实现上面介绍的任何功能:

// mapstructure.go
type DecoderConfig struct {
    ErrorUnused       bool
    ZeroFields        bool
    WeaklyTypedInput  bool
    Metadata          *Metadata
    Result            interface{}
    TagName           string
}

各个字段含义如下:

  • ErrorUnused:为true时,如果输入中的键值没有与之对应的字段就返回错误;
  • ZeroFields:为true时,在Decode前清空目标map。为false时,则执行的是map的合并。用在structmap的转换中;
  • WeaklyTypedInput:实现WeakDecode/WeakDecodeMetadata的功能;
  • Metadata:不为nil时,收集Metadata数据;
  • Result:为结果对象,在mapstruct的转换中,Resultstruct类型。在structmap的转换中,Resultmap类型;
  • TagName:默认使用mapstructure作为结构体的标签名,可以通过该字段设置。

看示例:

type Person struct {
  Name string
  Age  int
}

func main() {
  m := map[string]interface{}{
    "name": 123,
    "age":  "18",
    "job":  "programmer",
  }

  var p Person
  var metadata mapstructure.Metadata

  decoder, err := mapstructure.NewDecoder(&mapstructure.DecoderConfig{
    WeaklyTypedInput: true,
    Result:           &p,
    Metadata:         &metadata,
  })

  if err != nil {
    log.Fatal(err)
  }

  err = decoder.Decode(m)
  if err == nil {
    fmt.Println("person:", p)
    fmt.Printf("keys:%#v, unused:%#v\n", metadata.Keys, metadata.Unused)
  } else {
    fmt.Println(err.Error())
  }
}

这里用Decoder的方式实现了前面弱类型输入小节中的示例代码。实际上WeakDecode内部就是通过这种方式实现的,下面是WeakDecode的源码:

// mapstructure.go
func WeakDecode(input, output interface{}) error {
  config := &DecoderConfig{
    Metadata:         nil,
    Result:           output,
    WeaklyTypedInput: true,
  }

  decoder, err := NewDecoder(config)
  if err != nil {
    return err
  }

  return decoder.Decode(input)
}

再实际上,Decode/DecodeMetadata/WeakDecodeMetadata内部都是先设置DecoderConfig的对应字段,然后创建Decoder对象,最后调用其Decode方法实现的。

总结

mapstructure实现优雅,功能丰富,代码结构清晰,非常推荐一看!

大家如果发现好玩、好用的 Go 语言库,欢迎到 Go 每日一库 GitHub 上提交 issue????

参考

  1. mapstructure GitHub:https://github.com/mitchellh/mapstructure
  2. Go 每日一库 GitHub:https://github.com/darjun/go-daily-lib

我的博客:https://darjun.github.io

欢迎关注我的微信公众号【GoUpUp】,共同学习,一起进步~


有疑问加站长微信联系(非本文作者)

本文来自:Segmentfault

感谢作者:darjun

查看原文:Go 每日一库之 mapstructure

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

690 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传