前言
经常有人问:“浏览器输入url后发生了什么”,这个问题看似简单,但是却能全面的考察一个人对系统的了解程度。如果把这个问题引申到k8s领域,就可以问出“K8sClient提交Yaml后发生了什么”这样类似的问题。同样的,要回答这个问题,需要我们对k8s的设计有一个比较完整的了解。本文就试图回答这个问题,带着大家体验一下一份Yaml的K8S之旅。
k8s的设计
k8s可以说是松耦合设计的一个典型,如下图所示,各个组件都和ApiServer进行通信,只有ApiServer可以写Etcd,这样做的的好处有许多:各个组件解耦了,可以独立发展;各组件也可以分布在不同的机器上,避免单机繁忙,甚至对某些关键组件可以多实例部署,增强性能和可用性;由于数据库Etcd维护了集群的核心元数据和状态,由ApiServer统一验证鉴权更合理;等等。
了解了k8s的整体设计后,下面我们以Service这个应用最关心的资源的Yaml文件提交后的效果进行分析,其它资源也是大同小异。
以Service为例
系统的整体处理流程图大致如下,首先在k8s启动后,各个组件包括CoreDNS、各个Controller都会连接到ApiServer(list/watch),在client如kubectl提交yaml后,API server会把相关资源存储到Ectd中并通知各个组件,各个组件然后各自进行自己的相关操作,最后产生了一个可以对外提供服务的service。
了解了整体流程后,我们来对流程中涉及的各个组件进行细致的分析。
ApiServer
ApiServer 会启动一个httpsserver,并把相关端点注册到具体的storage,其中以“api”开头的属于legacy,其注册的部分常见端点有:
restStorageMap := map[string]rest.Storage{
"pods": podStorage.Pod,
"services": serviceRest,
"endpoints": endpointsStorage,
"nodes": nodeStorage.Node,
......
}
首先我们来看看通用的storage
type Store struct {
// NewFunc returns a new instance of the type this registry returns for a
// GET of a single object, e.g.:
//
// curl GET /apis/group/version/namespaces/my-ns/myresource/name-of-object
NewFunc func() runtime.Object
// NewListFunc returns a new list of the type this registry; it is the
// type returned when the resource is listed, e.g.:
//
// curl GET /apis/group/version/namespaces/my-ns/myresource
NewListFunc func() runtime.Object
}
// 资源创建方法
func (e *Store) Create(ctx context.Context, obj runtime.Object, createValidation rest.ValidateObjectFunc, options *metav1.CreateOptions) (runtime.Object, error) {
// 校验资源合法性
if createValidation != nil {
if err := createValidation(ctx, obj.DeepCopyObject()); err != nil {
return nil, err
}
}
name, err := e.ObjectNameFunc(obj)
key, err := e.KeyFunc(ctx, name)
qualifiedResource := e.qualifiedResourceFromContext(ctx)
ttl, err := e.calculateTTL(obj, 0, false)
out := e.NewFunc()
// 最终调用的要么是 dryrun,要么是etcd3
// https://github.com/kubernetes/kubernetes/blob/7f7378eddfe7a817c47fc75c220a729f4b78b913/staging/src/k8s.io/apiserver/pkg/storage/etcd3/store.go#L144
if err := e.Storage.Create(ctx, key, obj, out, ttl, dryrun.IsDryRun(options.DryRun)); err != nil {
err = storeerr.InterpretCreateError(err, qualifiedResource, name)
err = rest.CheckGeneratedNameError(e.CreateStrategy, err, obj)
// 资源已存在则可以原谅
if !apierrors.IsAlreadyExists(err) {
return nil, err
}
// 创建后没法获得则不能原谅
if errGet := e.Storage.Get(ctx, key, "", out, false); errGet != nil {
return nil, err
}
}
// 切面
if e.AfterCreate != nil {
if err := e.AfterCreate(out); err != nil {
return nil, err
}
}
return out, nil
}
从restStorageMap可见处理逻辑是Service和Endpoints对象都要被存入etcd,其中Service还有一些特殊的逻辑(如分配IP,健康检查等),而Endpoint没啥额外的逻辑,直接使用通用的storage即可。
// service 创建逻辑
func (rs *REST) Create(ctx context.Context, obj runtime.Object, createValidation rest.ValidateObjectFunc, options *metav1.CreateOptions) (runtime.Object, error) {
service := obj.(*api.Service)
// 切面
if err := rest.BeforeCreate(registry.Strategy, ctx, obj); err != nil {
return nil, err
}
// 是否需要释放IP,类似于事务,如果分配出错的话,把ip还给资源池
releaseServiceIP := false
defer func() {
if releaseServiceIP {
if helper.IsServiceIPSet(service) {
allocator := rs.getAllocatorByClusterIP(service)
allocator.Release(net.ParseIP(service.Spec.ClusterIP))
}
}
}()
var err error
if !dryrun.IsDryRun(options.DryRun) {
// 对于不是ExternalName类型的service才分配IP
if service.Spec.Type != api.ServiceTypeExternalName {
// 这个 分配器 实际上基于etcd
allocator := rs.getAllocatorBySpec(service)
if releaseServiceIP, err = initClusterIP(service, allocator); err != nil {
return nil, err
}
}
}
// 由 分配器 分配端口
nodePortOp := portallocator.StartOperation(rs.serviceNodePorts, dryrun.IsDryRun(options.DryRun))
// 同样需要判断是否需要回收
defer nodePortOp.Finish()
// 对于 NodePort和LoadBalance类型的service都要分配端口
if service.Spec.Type == api.ServiceTypeNodePort || service.Spec.Type == api.ServiceTypeLoadBalancer {
if err := initNodePorts(service, nodePortOp); err != nil {
return nil, err
}
}
// 对于需要健康检查的service分配专门的端口
// 至于loadbalance类型且ExternalTrafficPolicy为Local的才需要分配
if apiservice.NeedsHealthCheck(service) {
if err := allocateHealthCheckNodePort(service, nodePortOp); err != nil {
return nil, errors.NewInternalError(err)
}
}
// 实际创建
out, err := rs.services.Create(ctx, service, createValidation, options)
if err != nil {
err = rest.CheckGeneratedNameError(registry.Strategy, err, service)
}
}
// 基于 etcd 的 ip 分配器
serviceClusterIPAllocator, err := ipallocator.NewAllocatorCIDRRange(&serviceClusterIPRange, func(max int, rangeSpec string) (allocator.Interface, error) {
mem := allocator.NewAllocationMap(max, rangeSpec)
// TODO etcdallocator package to return a storage interface via the storageFactory
etcd, err := serviceallocator.NewEtcd(mem, "/ranges/serviceips", api.Resource("serviceipallocations"), serviceStorageConfig)
if err != nil {
return nil, err
}
serviceClusterIPRegistry = etcd
return etcd, nil
})
if err != nil {
return LegacyRESTStorage{}, genericapiserver.APIGroupInfo{}, fmt.Errorf("cannot create cluster IP allocator: %v", err)
}
restStorage.ServiceClusterIPAllocator = serviceClusterIPRegistry
对于Pod对象来说,除了存储外,还要将pod绑定到特定的机器上去:
func (r *BindingREST) setPodHostAndAnnotations(ctx context.Context, podID, oldMachine, machine string, annotations map[string]string, dryRun bool) (finalPod *api.Pod, err error) {
podKey, err := r.store.KeyFunc(ctx, podID)
if err != nil {
return nil, err
}
err = r.store.Storage.GuaranteedUpdate(ctx, podKey, &api.Pod{}, false, nil, storage.SimpleUpdate(func(obj runtime.Object) (runtime.Object, error) {
pod, ok := obj.(*api.Pod)
// 分配到机器
pod.Spec.NodeName = machine
// 设置注解
if pod.Annotations == nil {
pod.Annotations = make(map[string]string)
}
for k, v := range annotations {
pod.Annotations[k] = v
}
// condition,表明已被调度
podutil.UpdatePodCondition(&pod.Status, &api.PodCondition{
Type: api.PodScheduled,
Status: api.ConditionTrue,
})
finalPod = pod
return pod, nil
}), dryRun)
return finalPod, err
}
EndpointController
EndpointController监听Service和Pod的变化事件,并注册回调函数,通过Informer实现。同时利用Informer缓存最新的endpoint到本地,但是并不注册回调事件,因为endpoint基本上是最底层的概念,不需要额外的处理逻辑。
// 监听service
serviceInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
// 增删改
AddFunc: e.onServiceUpdate,
UpdateFunc: func(old, cur interface{}) {
e.onServiceUpdate(cur)
},
DeleteFunc: e.onServiceDelete,
})
...
// 监听pod
podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: e.addPod,
UpdateFunc: e.updatePod,
DeleteFunc: e.deletePod,
})
// 利用Informer可以获取最新的endpoint状况
e.endpointsLister = endpointsInformer.Lister()
e.endpointsSynced = endpointsInformer.Informer().HasSynced
收到相关资源增加事件后,把需要处理的service加入队列
func (e *EndpointController) onServiceUpdate(obj interface{}) {
// 获得service key 可能是 name 或则 namespace/name
key, err := controller.KeyFunc(obj)
if err != nil {
utilruntime.HandleError(fmt.Errorf("Couldn't get key for object %+v: %v", obj, err))
return
}
// 更新service的selector
_ = e.serviceSelectorCache.Update(key, obj.(*v1.Service).Spec.Selector)
// 将service加入待处理队列
e.queue.Add(key)
}
func (e *EndpointController) addPod(obj interface{}) {
pod := obj.(*v1.Pod)
// 获得该pod相关的service,这些service的selector包含这个pod
services, err := e.serviceSelectorCache.GetPodServiceMemberships(e.serviceLister, pod)
if err != nil {
utilruntime.HandleError(fmt.Errorf("Unable to get pod %s/%s's service memberships: %v", pod.Namespace, pod.Name, err))
return
}
// 将该pod相关的service加入待处理队列
for key := range services {
e.queue.AddAfter(key, e.endpointUpdatesBatchPeriod)
}
}
另一方面,当 EndpointController Run 起来过后,其实是循环处理队列中的service,处理内容包括修改Service本身和其对应的Endpoints
func (e *EndpointController) Run(workers int, stopCh <-chan struct{}) {
...
// 可以启动多个 goroutine ,来处理endpoint变化
for i := 0; i < workers; i++ {
go wait.Until(e.worker, e.workerLoopPeriod, stopCh)
}
go func() {
defer utilruntime.HandleCrash()
// 处理无主(没有对应service)的endpoint,类似垃圾回收,
// 当然这个方法只是遍历service的key并加入队列,实际处理由syncService完成
e.checkLeftoverEndpoints()
}()
}
// 具体处理方法
func (e *EndpointController) syncService(key string) error {
// 获得service
service, err := e.serviceLister.Services(namespace).Get(name)
if err != nil {
// 不是没找到,返回错误
if !errors.IsNotFound(err) {
return err
}
// 没有这个service,删掉相应的endpoint。这两者由key关联
err = e.client.CoreV1().Endpoints(namespace).Delete(context.TODO(), name, metav1.DeleteOptions{})
return nil
}
if service.Spec.Selector == nil {
// 没有selector的service,其endpoint只能是手动创建的,与本Controller无关,直接返回
// https://kubernetes.io/docs/concepts/services-networking/service/#services-without-selectors
return nil
}
// 获得相应pod
pods, err := e.podLister.Pods(service.Namespace).List(labels.Set(service.Spec.Selector).AsSelectorPreValidated())
// 遍历这些pod,把合适的pod的ip加入该service的endpoints集合
for _, pod := range pods {
// 返回这个pod的端点地址,需要处理v4 v6两类情况
ep, err := podToEndpointAddressForService(service, pod)
// headless service 可以不指定端口.
if len(service.Spec.Ports) == 0 {
if service.Spec.ClusterIP == api.ClusterIPNone {
subsets, totalReadyEps, totalNotReadyEps = addEndpointSubset(subsets, pod, epa, nil, tolerateUnreadyEndpoints)
}
} else {
// 针对每个port映射,生成端点地址
for i := range service.Spec.Ports {
servicePort := &service.Spec.Ports[i]
portNum, err := podutil.FindPort(pod, servicePort)
epp := endpointPortFromServicePort(servicePort, portNum)
subsets, readyEps, notReadyEps = addEndpointSubset(subsets, pod, epa, epp, tolerateUnreadyEndpoints)
}
}
}
// 检测service是否真的有变化
// 首先获得最新的端点状况
currentEndpoints, err := e.endpointsLister.Endpoints(service.Namespace).Get(service.Name)
if err != nil {
// 不存在该endpoint就创建
if errors.IsNotFound(err) {
currentEndpoints = &v1.Endpoints{
ObjectMeta: metav1.ObjectMeta{
Name: service.Name,
Labels: service.Labels,
},
}
} else {
return err
}
}
createEndpoints := len(currentEndpoints.ResourceVersion) == 0
// 如果不是新创建的endpoint,则比较是否相同,相同则说明不需要修改
if !createEndpoints &&
apiequality.Semantic.DeepEqual(currentEndpoints.Subsets, subsets) &&
apiequality.Semantic.DeepEqual(currentEndpoints.Labels, service.Labels) {
klog.V(5).Infof("endpoints are equal for %s/%s, skipping update", service.Namespace, service.Name)
return nil
}
newEndpoints := currentEndpoints.DeepCopy()
newEndpoints.Subsets = subsets
newEndpoints.Labels = service.Labels
// 调用go client ,让APIservier 创建/更新 endpoint对象
if createEndpoints {
// No previous endpoints, create them
_, err = e.client.CoreV1().Endpoints(service.Namespace).Create(context.TODO(), newEndpoints, metav1.CreateOptions{})
} else {
// Pre-existing
_, err = e.client.CoreV1().Endpoints(service.Namespace).Update(context.TODO(), newEndpoints, metav1.UpdateOptions{})
}
return nil
}
ServiceController
ServiceController监听Service和Node的变化事件,原理与EndpointController一致,都是利用Informer,Informer的事件回调方法主要也是把需要处理的service加入队列,以及处理node。
serviceInformer.Informer().AddEventHandlerWithResyncPeriod(
cache.ResourceEventHandlerFuncs{
AddFunc: func(cur interface{}) {
svc, ok := cur.(*v1.Service)
// 将需要分配负载均衡器或者清理的service加入待处理队列
if ok && (wantsLoadBalancer(svc) || needsCleanup(svc)) {
s.enqueueService(cur)
}
},
UpdateFunc: func(old, cur interface{}) {
oldSvc, ok1 := old.(*v1.Service)
curSvc, ok2 := cur.(*v1.Service)
if ok1 && ok2 && (s.needsUpdate(oldSvc, curSvc) || needsCleanup(curSvc)) {
s.enqueueService(cur)
}
},
},
serviceSyncPeriod,
)
nodeInformer.Informer().AddEventHandlerWithResyncPeriod(
cache.ResourceEventHandlerFuncs{
AddFunc: func(cur interface{}) {
s.nodeSyncLoop()
},
UpdateFunc: func(old, cur interface{}) {
s.nodeSyncLoop()
},
DeleteFunc: func(old interface{}) {
s.nodeSyncLoop()
},
其中处理node的方法nodeSyncLoop,主要工作是对比最新节点和原有节点,若有变化则更新对应的service。
func (s *Controller) nodeSyncLoop() {
// 最新且ready的所有节点
// 要所有节点是因为loadbalancer可能需要挂载到所有节点
// 取决于具体策略externalTrafficPolicy,不同云厂商实现大同小异
// https://aws.amazon.com/cn/blogs/opensource/network-load-balancer-support-in-kubernetes-1-9/
// https://help.aliyun.com/document_detail/86531.html#title-cn3-euk-ij6
newHosts, err := listWithPredicate(s.nodeLister, getNodeConditionPredicate())
// 节点未变化,本来不需要变动,但是可以在这里处理上次处理失败的service
if nodeSlicesEqualForLB(newHosts, s.knownHosts) {
s.servicesToUpdate = s.updateLoadBalancerHosts(s.servicesToUpdate, newHosts)
return
}
// 获得所有service
s.servicesToUpdate = s.cache.allServices()
// 处理service,保留本次处理失败的service留给下次处理
s.servicesToUpdate = s.updateLoadBalancerHosts(s.servicesToUpdate, newHosts)
// 更新本地service
s.knownHosts = newHosts
}
// 处理service,保留本次处理失败的service
func (s *Controller) updateLoadBalancerHosts(services []*v1.Service, hosts []*v1.Node) (servicesToRetry []*v1.Service) {
for _, service := range services {
func() {
if err := s.lockedUpdateLoadBalancerHosts(service, hosts); err != nil {
servicesToRetry = append(servicesToRetry, service)
}
}()
}
return servicesToRetry
}
func (s *Controller) lockedUpdateLoadBalancerHosts(service *v1.Service, hosts []*v1.Node) error {
// 只处理 loadbalance 类型的service
if !wantsLoadBalancer(service) {
return nil
}
// 由云厂商实现loadBalancer的分配,比如 aws aliyun等
err := s.balancer.UpdateLoadBalancer(context.TODO(), s.clusterName, service, hosts)
if err == nil {
return nil
}
if _, exists, err := s.balancer.GetLoadBalancer(context.TODO(), s.clusterName, service); err != nil {
runtime.HandleError(fmt.Errorf("failed to check if load balancer exists for service %s/%s: %v", service.Namespace, service.Name, err))
} else if !exists {
return nil
}
s.eventRecorder.Eventf(service, v1.EventTypeWarning, "UpdateLoadBalancerFailed", "Error updating load balancer with new hosts %v: %v", nodeNames(hosts), err)
return err
}
另一方面,当 ServiceController Run 起来过后,其实是循环处理队列中的service和node,主要完成的工作是LoadBalancer类型的service与后端node的映射关系的维护。
func (s *Controller) Run(stopCh <-chan struct{}, workers int) {
// 启动多个协程来处理service
for i := 0; i < workers; i++ {
go wait.Until(s.worker, time.Second, stopCh)
}
// 处理节点,也就是说不仅有事件触发,也有主动循环来处理节点变化
go wait.Until(s.nodeSyncLoop, nodeSyncPeriod, stopCh)
}
// 具体处理service的方法
func (s *Controller) syncService(key string) error {
// 由key获得命名空间和service name
namespace, name, err := cache.SplitMetaNamespaceKey(key)
// 最新的service
service, err := s.serviceLister.Services(namespace).Get(name)
switch {
case errors.IsNotFound(err):
// 没找到,说明该删除这个service了
err = s.processServiceDeletion(key)
case err != nil:
runtime.HandleError(fmt.Errorf("Unable to retrieve service %v from store: %v", key, err))
default:
// 创建或者更新service
err = s.processServiceCreateOrUpdate(service, key)
}
return err
}
CoreDNS
CoreDNS的 kubernetes 插件配置好并启动后,以 service 的形式(名字就叫 kube-dns 兼容之前的dns插件名称)运行在k8s集群中,DNSController 监听 namespace、service和pod(可选)、endpoint(可选)的变化,并通过 Informer 机制缓存在本地。
func (k *Kubernetes) InitKubeCache(ctx context.Context) (err error) {
// 获取配置
config, err := k.getClientConfig()
// 依据配置获得client
kubeClient, err := kubernetes.NewForConfig(config)
if err != nil {
return fmt.Errorf("failed to create kubernetes notification controller: %q", err)
}
k.opts.initPodCache = k.podMode == podModeVerified
// controller中监听各资源
k.APIConn = newdnsController(ctx, kubeClient, k.opts)
return err
}
// 在 controller 中监听各个资源的变化,并存储在本地
dns.svcLister, dns.svcController = object.NewIndexerInformer(
&cache.ListWatch{
ListFunc: serviceListFunc(ctx, dns.client, api.NamespaceAll, dns.selector),
WatchFunc: serviceWatchFunc(ctx, dns.client, api.NamespaceAll, dns.selector),
},
&api.Service{},
)
dns.nsLister, dns.nsController = cache.NewInformer(
&cache.ListWatch{
ListFunc: namespaceListFunc(ctx, dns.client, dns.namespaceSelector),
WatchFunc: namespaceWatchFunc(ctx, dns.client, dns.namespaceSelector),
},
&api.Namespace{},
)
pod和endpoint可选
...
CoreDNS处理域名查询通过每一个插件的ServeDNS方法完成,在 kubernetes插件 中如下:
// ServeDNS implements the plugin.Handler interface.
func (k Kubernetes) ServeDNS(ctx context.Context, w dns.ResponseWriter, r *dns.Msg) (int, error) {
state := request.Request{W: w, Req: r}
// 处理多种请求类型
switch state.QType() {
case dns.TypeAXFR, dns.TypeIXFR:
k.Transfer(ctx, state)
case dns.TypeA:
records, err = plugin.A(ctx, &k, zone, state, nil, plugin.Options{})
case dns.TypeAAAA:
records, err = plugin.AAAA(ctx, &k, zone, state, nil, plugin.Options{})
case dns.TypeTXT:
records, err = plugin.TXT(ctx, &k, zone, state, nil, plugin.Options{})
case dns.TypeCNAME:
records, err = plugin.CNAME(ctx, &k, zone, state, plugin.Options{})
case dns.TypePTR:
records, err = plugin.PTR(ctx, &k, zone, state, plugin.Options{})
....
default:
// Do a fake A lookup, so we can distinguish between NODATA and NXDOMAIN
fake := state.NewWithQuestion(state.QName(), dns.TypeA)
fake.Zone = state.Zone
_, err = plugin.A(ctx, &k, zone, fake, nil, plugin.Options{})
}
return dns.RcodeSuccess, nil
}
该方法处理具体请求时,是通过informer查找存在本地的service或者pod的endpoints信息完成域名和ip的映射。
func (k *Kubernetes) Services(ctx context.Context, state request.Request, exact bool, opt plugin.Options) (svcs []msg.Service, err error) {
// 特殊dns请求类型直接可以返回
switch state.QType() {
case dns.TypeTXT:
return []msg.Service{svc}, nil
case dns.TypeNS:
return svcs, nil
}
if isDefaultNS(state.Name(), state.Zone) {
return svcs, nil
}
// 其余类型需要查询k8s返回记录
s, e := k.Records(ctx, state, false)
internal := []msg.Service{}
for _, svc := range s {
if t, _ := svc.HostType(); t != dns.TypeCNAME {
internal = append(internal, svc)
}
}
return internal, e
}
// records 方法解析请求,做些验证,然后查找k8s中的相应记录
func (k *Kubernetes) Records(ctx context.Context, state request.Request, exact bool) ([]msg.Service, error) {
r, e := parseRequest(state.Name(), state.Zone)
...
if r.podOrSvc == Pod {
// 处理pod请求
pods, err := k.findPods(r, state.Zone)
return pods, err
}
// 处理service请求
services, err := k.findServices(r, state.Zone)
return services, err
}
// 这个方法处理pod的dns请求
func (k *Kubernetes) findPods(r recordRequest, zone string) (pods []msg.Service, err error) {
// 特性关闭,返回空
if k.podMode == podModeDisabled {
return nil, errNoItems
}
podname := r.service
// pod的name直接可以解析ip,区分ipv4 ipv6
if strings.Count(podname, "-") == 3 && !strings.Contains(podname, "--") {
ip = strings.Replace(podname, "-", ".", -1)
} else {
ip = strings.Replace(podname, "-", ":", -1)
}
if k.podMode == podModeInsecure {
// 不需检查模式,直接返回记录
return []msg.Service{{Key: strings.Join([]string{zonePath, Pod, namespace, podname}, "/"), Host: ip, TTL: k.ttl}}, err
}
// 需要检查的模式,只返回存在的pod的记录
for _, p := range k.APIConn.PodIndex(ip) {
// check for matching ip and namespace
if ip == p.PodIP && match(namespace, p.Namespace) {
s := msg.Service{Key: strings.Join([]string{zonePath, Pod, namespace, podname}, "/"), Host: ip, TTL: k.ttl}
pods = append(pods, s)
}
}
return pods, err
}
// 这个方法处理各个类型的service请求,从本地cache中读取相应记录
func (k *Kubernetes) findServices(r recordRequest, zone string) (services []msg.Service, err error) {
// 确定是否是模糊查询
if wildcard(r.service) || wildcard(r.namespace) {
// 返回所有状态正确的service
serviceList = k.APIConn.ServiceList()
endpointsListFunc = func() []*object.Endpoints { return k.APIConn.EndpointsList() }
} else {
// 只返回 name + "." + namespace 类型的service
idx := object.ServiceKey(r.service, r.namespace)
serviceList = k.APIConn.SvcIndex(idx)
endpointsListFunc = func() []*object.Endpoints { return k.APIConn.EpIndex(idx) }
}
zonePath := msg.Path(zone, coredns)
for _, svc := range serviceList {
// service name和 namespace都要匹配才行
if !(match(r.namespace, svc.Namespace) && match(r.service, svc.Name)) {
continue
}
// 如果是模糊查询,需要namespace被暴露才行
if wildcard(r.namespace) && !k.namespaceExposed(svc.Namespace) {
continue
}
// 处理endpoint或者headless service,这两类请求都需遍历endpoint
if svc.ClusterIP == api.ClusterIPNone || r.endpoint != "" {
for _, ep := range endpointsList {
if ep.Name != svc.Name || ep.Namespace != svc.Namespace {
continue
}
// 遍历endpoint的每一个ip和port
for _, eps := range ep.Subsets {
for _, addr := range eps.Addresses {
for _, p := range eps.Ports {
s := msg.Service{Host: addr.IP, Port: int(p.Port), TTL: k.ttl}
s.Key = strings.Join([]string{zonePath, Svc, svc.Namespace, svc.Name, endpointHostname(addr, k.endpointNameMode)}, "/")
err = nil
services = append(services, s)
}
}
}
}
continue
}
// 处理 External service
if svc.Type == api.ServiceTypeExternalName {
// 如 cluster.local/svc/namespace/service
s := msg.Service{Key: strings.Join([]string{zonePath, Svc, svc.Namespace, svc.Name}, "/"), Host: svc.ExternalName, TTL: k.ttl}
if t, _ := s.HostType(); t == dns.TypeCNAME {
// 只有 cname 记录
s.Key = strings.Join([]string{zonePath, Svc, svc.Namespace, svc.Name}, "/")
services = append(services, s)
err = nil
}
continue
}
// 处理 ClusterIP service
for _, p := range svc.Ports {
if !(match(r.port, p.Name) && match(r.protocol, string(p.Protocol))) {
continue
}
s := msg.Service{Host: svc.ClusterIP, Port: int(p.Port), TTL: k.ttl}
s.Key = strings.Join([]string{zonePath, Svc, svc.Namespace, svc.Name}, "/")
services = append(services, s)
}
}
return services, err
}
KubeProxy
KubeProxy的主要工作是监听Service和Endpoints等的变化,并把路由规则(如何根据service的域名或者ip获得后端真实pod ip)刷新到节点上。
这样,每个pod在访问service时,就会向CoreDNS要到对应的service ip 或者直接是每个backend pod的ip(如 headless service),对于前者由本地路由规则将service ip的流量引导至真正的pod ip。我们的这份yaml也终于成了一个可以对外提供服务的service。
KubeProxy这部分由于经过了多个版本的迭代,目前包括三种类型,限于篇幅本文不展开,且待下回分解。
参考
- 服务、负载均衡和联网 - Kubernetes: https://kubernetes.io/zh/docs/concepts/services-networking/
- How to Add Plugins to CoreDNS: https://coredns.io/2017/03/01/how-to-add-plugins-to-coredns/
有疑问加站长微信联系(非本文作者)