合并排序
先对数组进行拆分,拆分成一个个单独的数字,然后再对拆分的数组进行合并。整体思路就是天下大事,分久必合。
如图所示,先对数组进行拆分,然后通过比较合并数组,因为每个合并的数组都是排好序的,因此可以通过遍历进行数组的合并。
代码
package main
import "fmt"
func mergeSort(a []int) []int {
if len(a) < 2 {
return a
}
m := (len(a)) / 2
f := mergeSort(a[:m])
s := mergeSort(a[m:])
return merge(f, s)
}
func merge(f []int, s []int) []int {
var i, j int
size := len(f) + len(s)
a := make([]int, size, size)
for z := 0; z < size; z++ {
lenF := len(f)
lenS := len(s)
if i > lenF-1 && j <= lenS-1 {
a[z] = s[j]
j++
} else if j > lenS-1 && i <= lenF-1 {
a[z] = f[i]
i++
} else if f[i] < s[j] {
a[z] = f[i]
i++
} else {
a[z] = s[j]
j++
}
}
return a
}
func main() {
a := []int{75, 12, 34, 45, 0, 123, 32, 56, 32, 99, 123, 11, 86, 33}
fmt.Println(a)
fmt.Println(mergeSort(a))
}
时空复杂度
归并排序是稳定排序,它也是一种十分高效的排序,能利用完全二叉树特性的排序一般性能都不会太差。java中Arrays.sort()采用了一种名为TimSort的排序算法,就是归并排序的优化版本。从上文的图中可看出,每次合并操作的平均时间复杂度为O(n),而完全二叉树的深度为|log2n|。总的平均时间复杂度为O(nlogn)。而且,归并排序的最好,最坏,平均时间复杂度均为O(nlogn)。
有疑问加站长微信联系(非本文作者)