Go发起HTTP2.0请求流程分析(前篇)

新世界杂货铺 · · 955 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

来自公众号:新世界杂货铺

前言

Go中的HTTP请求之——HTTP1.1请求流程分析之后,中间断断续续,历时近一月,终于才敢开始码字写下本文。

阅读建议

HTTP2.0在建立TCP连接和安全的TLS传输通道与HTTP1.1的流程基本一致。所以笔者建议没有看过Go中的HTTP请求之——HTTP1.1请求流程分析这篇文章的先去补一下课,本文会基于前一篇文章仅介绍和HTTP2.0相关的逻辑。

(*Transport).roundTrip

(*Transport).roundTrip方法会调用t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)初始化TLSClientConfig以及h2transport,而这两者都和HTTP2.0有着紧密的联系。

TLSClientConfig: 初始化client支持的http协议, 并在tls握手时告知server。

h2transport: 如果本次请求是http2,那么h2transport会接管连接,请求和响应的处理逻辑。

下面看看源码:

func (t *Transport) onceSetNextProtoDefaults() {
    // ...此处省略代码...
    t2, err := http2configureTransport(t)
    if err != nil {
        log.Printf("Error enabling Transport HTTP/2 support: %v", err)
        return
    }
    t.h2transport = t2

    // ...此处省略代码...
}
func http2configureTransport(t1 *Transport) (*http2Transport, error) {
    connPool := new(http2clientConnPool)
    t2 := &http2Transport{
        ConnPool: http2noDialClientConnPool{connPool},
        t1:       t1,
    }
    connPool.t = t2
    if err := http2registerHTTPSProtocol(t1, http2noDialH2RoundTripper{t2}); err != nil {
        return nil, err
    }
    if t1.TLSClientConfig == nil {
        t1.TLSClientConfig = new(tls.Config)
    }
    if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "h2") {
        t1.TLSClientConfig.NextProtos = append([]string{"h2"}, t1.TLSClientConfig.NextProtos...)
    }
    if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "http/1.1") {
        t1.TLSClientConfig.NextProtos = append(t1.TLSClientConfig.NextProtos, "http/1.1")
    }
    upgradeFn := func(authority string, c *tls.Conn) RoundTripper {
        addr := http2authorityAddr("https", authority)
        if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
            go c.Close()
            return http2erringRoundTripper{err}
        } else if !used {
            // Turns out we don't need this c.
            // For example, two goroutines made requests to the same host
            // at the same time, both kicking off TCP dials. (since protocol
            // was unknown)
            go c.Close()
        }
        return t2
    }
    if m := t1.TLSNextProto; len(m) == 0 {
        t1.TLSNextProto = map[string]func(string, *tls.Conn) RoundTripper{
            "h2": upgradeFn,
        }
    } else {
        m["h2"] = upgradeFn
    }
    return t2, nil
}

笔者将上述的源码简单拆解为以下几个步骤:

  1. 新建一个http2clientConnPool并复制给t2,以后http2的请求会优先从该连接池中获取连接。
  2. 初始化TLSClientConfig,并将支持的h2http1.1协议添加到TLSClientConfig.NextProtos中。
  3. 定义一个h2upgradeFn存储到t1.TLSNextProto里。

鉴于前一篇文章对新建连接前的步骤有了较为详细的介绍,所以这里直接看和server建立连接的部分源码,即(*Transport).dialConn方法:

func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) {
    // ...此处省略代码...
    if cm.scheme() == "https" && t.hasCustomTLSDialer() {
        // ...此处省略代码...
    } else {
        conn, err := t.dial(ctx, "tcp", cm.addr())
        if err != nil {
            return nil, wrapErr(err)
        }
        pconn.conn = conn
        if cm.scheme() == "https" {
            var firstTLSHost string
            if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil {
                return nil, wrapErr(err)
            }
            if err = pconn.addTLS(firstTLSHost, trace); err != nil {
                return nil, wrapErr(err)
            }
        }
    }

    // Proxy setup.
    // ...此处省略代码...

    if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" {
        if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok {
            return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: next(cm.targetAddr, pconn.conn.(*tls.Conn))}, nil
        }
    }

    // ...此处省略代码...
}

笔者对上述的源码描述如下:

  1. 调用t.dial(ctx, "tcp", cm.addr())创建TCP连接。
  2. 如果是https的请求, 则对请求建立安全的tls传输通道。
  3. 检查tls的握手状态,如果和server协商的NegotiatedProtocol协议不为空,且client的t.TLSNextProto有该协议,则返回alt不为空的持久连接(HTTP1.1不会进入if条件里)。

笔者对上述的第三点进行展开。经笔者在本地debug验证,当client和server都支持http2时,s.NegotiatedProtocol的值为h2s.NegotiatedProtocolIsMutual的值为true

在上面分析http2configureTransport函数时,我们知道TLSNextProto注册了一个key为h2的函数,所以调用next实际就是调用前面的upgradeFn函数。

upgradeFn会调用connPool.addConnIfNeeded向http2的连接池添加一个tls传输通道,并最终返回前面已经创建好的t2http2Transport

func (p *http2clientConnPool) addConnIfNeeded(key string, t *http2Transport, c *tls.Conn) (used bool, err error) {
    p.mu.Lock()
    // ...此处省略代码...
    // 主要用于判断是否有必要像连接池添加新的连接
    // 判断连接池中是否已有同host连接,如果有且该链接能够处理新的请求则直接返回
    call, dup := p.addConnCalls[key]
    if !dup {
        // ...此处省略代码...
        call = &http2addConnCall{
            p:    p,
            done: make(chan struct{}),
        }
        p.addConnCalls[key] = call
        go call.run(t, key, c)
    }
    p.mu.Unlock()

    <-call.done
    if call.err != nil {
        return false, call.err
    }
    return !dup, nil
}
func (c *http2addConnCall) run(t *http2Transport, key string, tc *tls.Conn) {
    cc, err := t.NewClientConn(tc)

    p := c.p
    p.mu.Lock()
    if err != nil {
        c.err = err
    } else {
        p.addConnLocked(key, cc)
    }
    delete(p.addConnCalls, key)
    p.mu.Unlock()
    close(c.done)
}

分析上述的源码我们能够得到两点结论:

  1. 执行完upgradeFn之后,(*Transport).dialConn返回的持久化连接中alt字段已经不是nil了。
  2. t.NewClientConn(tc)新建出来的连接会保存在http2的连接池即http2clientConnPool中,下一小结将对NewClientConn展开分析。

最后我们回到(*Transport).roundTrip方法并分析其中的关键源码:

func (t *Transport) roundTrip(req *Request) (*Response, error) {
    t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
    // ...此处省略代码...
    for {
        select {
        case <-ctx.Done():
            req.closeBody()
            return nil, ctx.Err()
        default:
        }

        // ...此处省略代码...
        pconn, err := t.getConn(treq, cm)
        if err != nil {
            t.setReqCanceler(req, nil)
            req.closeBody()
            return nil, err
        }

        var resp *Response
        if pconn.alt != nil {
            // HTTP/2 path.
            t.setReqCanceler(req, nil) // not cancelable with CancelRequest
            resp, err = pconn.alt.RoundTrip(req)
        } else {
            resp, err = pconn.roundTrip(treq)
        }
        if err == nil {
            return resp, nil
        }

        // ...此处省略代码...
    }
}

结合前面的分析,pconn.alt在server和client都支持http2协议的情况下是不为nil的。所以,http2的请求会走pconn.alt.RoundTrip(req)分支,也就是说http2的请求流程就被http2Transport接管啦。

(*http2Transport).NewClientConn

(*http2Transport).NewClientConn内部会调用t.newClientConn(c, t.disableKeepAlives())

因为本节内容较多,所以笔者不再一次性贴出源码,而是按关键步骤分析并分块儿贴出源码。

1、初始化一个http2ClientConn

cc := &http2ClientConn{
    t:                     t,
    tconn:                 c,
    readerDone:            make(chan struct{}),
    nextStreamID:          1,
    maxFrameSize:          16 << 10,           // spec default
    initialWindowSize:     65535,              // spec default
    maxConcurrentStreams:  1000,               // "infinite", per spec. 1000 seems good enough.
    peerMaxHeaderListSize: 0xffffffffffffffff, // "infinite", per spec. Use 2^64-1 instead.
    streams:               make(map[uint32]*http2clientStream),
    singleUse:             singleUse,
    wantSettingsAck:       true,
    pings:                 make(map[[8]byte]chan struct{}),
}

上面的源码新建了一个默认的http2ClientConn。

initialWindowSize:初始化窗口大小为65535,这个值之后会初始化每一个数据流可发送的数据窗口大小。

maxConcurrentStreams:表示每个连接上允许最多有多少个数据流同时传输数据。

streams:当前连接上的数据流。

singleUse: 控制http2的连接是否允许多个数据流共享,其值由t.disableKeepAlives()控制。

2、创建一个条件锁并且新建Writer&Reader。

cc.cond = sync.NewCond(&cc.mu)
cc.flow.add(int32(http2initialWindowSize))
cc.bw = bufio.NewWriter(http2stickyErrWriter{c, &cc.werr})
cc.br = bufio.NewReader(c)

新建Writer&Reader没什么好说的,需要注意的是cc.flow.add(int32(http2initialWindowSize))

cc.flow.add将当前连接的可写流控制窗口大小设置为http2initialWindowSize,即65535。

3、新建一个读写数据帧的Framer。

cc.fr = http2NewFramer(cc.bw, cc.br)
cc.fr.ReadMetaHeaders = hpack.NewDecoder(http2initialHeaderTableSize, nil)
cc.fr.MaxHeaderListSize = t.maxHeaderListSize()

4、向server发送开场白,并发送一些初始化数据帧。

initialSettings := []http2Setting{
    {ID: http2SettingEnablePush, Val: 0},
    {ID: http2SettingInitialWindowSize, Val: http2transportDefaultStreamFlow},
}
if max := t.maxHeaderListSize(); max != 0 {
    initialSettings = append(initialSettings, http2Setting{ID: http2SettingMaxHeaderListSize, Val: max})
}

cc.bw.Write(http2clientPreface)
cc.fr.WriteSettings(initialSettings...)
cc.fr.WriteWindowUpdate(0, http2transportDefaultConnFlow)
cc.inflow.add(http2transportDefaultConnFlow + http2initialWindowSize)
cc.bw.Flush()

client向server发送的开场白内容如下:

const (
    // client首先想server发送以PRI开头的一串字符串。
    http2ClientPreface = "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
)
var (
    http2clientPreface = []byte(http2ClientPreface)
)

发送完开场白后,client向server发送SETTINGS数据帧。

http2SettingEnablePush: 告知server客户端是否开启push功能。

http2SettingInitialWindowSize:告知server客户端可接受的最大数据窗口是http2transportDefaultStreamFlow(4M)。

发送完SETTINGS数据帧后,发送WINDOW_UPDATE数据帧, 因为第一个参数为0即streamID为0,则是告知server此连接可接受的最大数据窗口为http2transportDefaultConnFlow(1G)。

发送完WINDOW_UPDATE数据帧后,将client的可读流控制窗口大小设置为http2transportDefaultConnFlow + http2initialWindowSize

5、开启读循环并返回

go cc.readLoop()

(*http2Transport).RoundTrip

(*http2Transport).RoundTrip只是一个入口函数,它会调用(*http2Transport). RoundTripOpt方法。

(*http2Transport). RoundTripOpt有两个步骤比较关键:

t.connPool().GetClientConn(req, addr): 在http2的连接池里面获取一个可用连接,其中连接池的类型为http2noDialClientConnPool,参考http2configureTransport函数。

cc.roundTrip(req): 通过获取到的可用连接发送请求并返回响应。

(http2noDialClientConnPool).GetClientConn

根据实际的debug结果(http2noDialClientConnPool).GetClientConn最终会调用(*http2clientConnPool).getClientConn(req *Request, addr string, dialOnMiss bool)

通过(http2noDialClientConnPool).GetClientConn获取连接时传递给(*http2clientConnPool).getClientConn方法的第三个参数始终为false,该参数为false时代表着即使无法正常获取可用连接,也不在这个环节重新发起拨号流程。

在(*http2clientConnPool).getClientConn中会遍历同地址的连接,并判断连接的状态从而获取一个可以处理请求的连接。

for _, cc := range p.conns[addr] {
    if st := cc.idleState(); st.canTakeNewRequest {
        if p.shouldTraceGetConn(st) {
            http2traceGetConn(req, addr)
        }
        p.mu.Unlock()
        return cc, nil
    }
}

cc.idleState()判断当前连接池中的连接能否处理新的请求:

1、当前连接是否能被多个请求共享,如果仅单个请求使用且已经有一个数据流,则当前连接不能处理新的请求。

if cc.singleUse && cc.nextStreamID > 1 {
    return
}

2、以下几点均为true时,才代表当前连接能够处理新的请求:

  • 连接状态正常,即未关闭并且不处于正在关闭的状态。
  • 当前连接正在处理的数据流小于maxConcurrentStreams
  • 下一个要处理的数据流 + 当前连接处于等待状态的请求*2 < math.MaxInt32。
  • 当前连接没有长时间处于空闲状态(主要通过cc.tooIdleLocked()判断)。
st.canTakeNewRequest = cc.goAway == nil && !cc.closed && !cc.closing && maxConcurrentOkay &&
        int64(cc.nextStreamID)+2*int64(cc.pendingRequests) < math.MaxInt32 &&
        !cc.tooIdleLocked()

当从链接池成功获取到一个可以处理请求的连接,就可以和server进行数据交互,即(*http2ClientConn).roundTrip流程。

(*http2ClientConn).roundTrip

1、在真正开始处理请求前,还要进行header检查,http2对http1.1的某些header是不支持的,笔者就不对这个逻辑进行分析了,直接上源码:

func http2checkConnHeaders(req *Request) error {
    if v := req.Header.Get("Upgrade"); v != "" {
        return fmt.Errorf("http2: invalid Upgrade request header: %q", req.Header["Upgrade"])
    }
    if vv := req.Header["Transfer-Encoding"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && vv[0] != "chunked") {
        return fmt.Errorf("http2: invalid Transfer-Encoding request header: %q", vv)
    }
    if vv := req.Header["Connection"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && !strings.EqualFold(vv[0], "close") && !strings.EqualFold(vv[0], "keep-alive")) {
        return fmt.Errorf("http2: invalid Connection request header: %q", vv)
    }
    return nil
}
func http2commaSeparatedTrailers(req *Request) (string, error) {
    keys := make([]string, 0, len(req.Trailer))
    for k := range req.Trailer {
        k = CanonicalHeaderKey(k)
        switch k {
        case "Transfer-Encoding", "Trailer", "Content-Length":
            return "", &http2badStringError{"invalid Trailer key", k}
        }
        keys = append(keys, k)
    }
    if len(keys) > 0 {
        sort.Strings(keys)
        return strings.Join(keys, ","), nil
    }
    return "", nil
}

2、调用(*http2ClientConn).awaitOpenSlotForRequest,一直等到当前连接处理的数据流小于maxConcurrentStreams, 如果此函数返回错误,则本次请求失败。

2.1、double check当前连接可用。

if cc.closed || !cc.canTakeNewRequestLocked() {
    if waitingForConn != nil {
        close(waitingForConn)
    }
    return http2errClientConnUnusable
}

2.2、如果当前连接处理的数据流小于maxConcurrentStreams则直接返回nil。笔者相信大部分逻辑走到这儿就返回了。

if int64(len(cc.streams))+1 <= int64(cc.maxConcurrentStreams) {
    if waitingForConn != nil {
        close(waitingForConn)
    }
    return nil
}

2.3、如果当前连接处理的数据流确实已经达到上限,则开始进入等待流程。

if waitingForConn == nil {
    waitingForConn = make(chan struct{})
    go func() {
        if err := http2awaitRequestCancel(req, waitingForConn); err != nil {
            cc.mu.Lock()
            waitingForConnErr = err
            cc.cond.Broadcast()
            cc.mu.Unlock()
        }
    }()
}
cc.pendingRequests++
cc.cond.Wait()
cc.pendingRequests--

通过上面的逻辑知道,当前连接处理的数据流达到上限后有两种情况,一是等待请求被取消,二是等待其他请求结束。如果有其他数据流结束并唤醒当前等待的请求,则重复2.1、2.2和2.3的步骤。

3、调用cc.newStream()在连接上创建一个数据流(创建数据流是线程安全的,因为源码中在调用awaitOpenSlotForRequest之前先加锁,直到写入请求的header之后才释放锁)。

func (cc *http2ClientConn) newStream() *http2clientStream {
    cs := &http2clientStream{
        cc:        cc,
        ID:        cc.nextStreamID,
        resc:      make(chan http2resAndError, 1),
        peerReset: make(chan struct{}),
        done:      make(chan struct{}),
    }
    cs.flow.add(int32(cc.initialWindowSize))
    cs.flow.setConnFlow(&cc.flow)
    cs.inflow.add(http2transportDefaultStreamFlow)
    cs.inflow.setConnFlow(&cc.inflow)
    cc.nextStreamID += 2
    cc.streams[cs.ID] = cs
    return cs
}

笔者对上述代码简单描述如下:

  • 新建一个http2clientStream,数据流ID为cc.nextStreamID,新建数据流后,cc.nextStreamID +=2
  • 数据流通过http2resAndError管道接收请求的响应。
  • 初始化当前数据流的可写流控制窗口大小为cc.initialWindowSize,并保存连接的可写流控制指针。
  • 初始化当前数据流的可读流控制窗口大小为http2transportDefaultStreamFlow,并保存连接的可读流控制指针。
  • 最后将新建的数据流注册到当前连接中。

4、调用cc.t.getBodyWriterState(cs, body)会返回一个http2bodyWriterState结构体。通过该结构体可以知道请求body是否发送成功。

func (t *http2Transport) getBodyWriterState(cs *http2clientStream, body io.Reader) (s http2bodyWriterState) {
    s.cs = cs
    if body == nil {
        return
    }
    resc := make(chan error, 1)
    s.resc = resc
    s.fn = func() {
        cs.cc.mu.Lock()
        cs.startedWrite = true
        cs.cc.mu.Unlock()
        resc <- cs.writeRequestBody(body, cs.req.Body)
    }
    s.delay = t.expectContinueTimeout()
    if s.delay == 0 ||
        !httpguts.HeaderValuesContainsToken(
            cs.req.Header["Expect"],
            "100-continue") {
        return
    }
    // 此处省略代码,因为绝大部分请求都不会设置100-continue的标头
    return
}

s.fn: 标记当前数据流开始写入数据,并且将请求body的发送结果写入s.resc管道(本文暂不对writeRequestBody展开分析,下篇文章会对其进行分析)。

5、因为是多个请求共享一个连接,那么向连接写入数据帧时需要加锁,比如加锁写入请求头。

cc.wmu.Lock()
endStream := !hasBody && !hasTrailers
werr := cc.writeHeaders(cs.ID, endStream, int(cc.maxFrameSize), hdrs)
cc.wmu.Unlock()

6、如果有请求body,则开始写入请求body,没有请求body则设置响应header的超时时间(有请求body时,响应header的超时时间需要在请求body写完之后设置)。

if hasBody {
    bodyWriter.scheduleBodyWrite()
} else {
    http2traceWroteRequest(cs.trace, nil)
    if d := cc.responseHeaderTimeout(); d != 0 {
        timer := time.NewTimer(d)
        defer timer.Stop()
        respHeaderTimer = timer.C
    }
}

scheduleBodyWrite的内容如下:

func (s http2bodyWriterState) scheduleBodyWrite() {
    if s.timer == nil {
        // We're not doing a delayed write (see
        // getBodyWriterState), so just start the writing
        // goroutine immediately.
        go s.fn()
        return
    }
    http2traceWait100Continue(s.cs.trace)
    if s.timer.Stop() {
        s.timer.Reset(s.delay)
    }
}

因为笔者的请求header中没有携带100-continue标头,所以在前面的getBodyWriterState函数中初始化的s.timer为nil即调用scheduleBodyWrite会立即开始发送请求body。

7、轮询管道获取响应结果。

在看轮询源码之前,先看一个简单的函数:

handleReadLoopResponse := func(re http2resAndError) (*Response, bool, error) {
    res := re.res
    if re.err != nil || res.StatusCode > 299 {
        bodyWriter.cancel()
        cs.abortRequestBodyWrite(http2errStopReqBodyWrite)
    }
    if re.err != nil {
        cc.forgetStreamID(cs.ID)
        return nil, cs.getStartedWrite(), re.err
    }
    res.Request = req
    res.TLS = cc.tlsState
    return res, false, nil
}

该函数主要就是判断读到的响应是否正常,并根据响应的结果构造(*http2ClientConn).roundTrip的返回值。

了解了handleReadLoopResponse之后,下面就看看轮询的逻辑:

for {
    select {
    case re := <-readLoopResCh:
        return handleReadLoopResponse(re)
    // 此处省略代码(包含请求取消,请求超时等管道的轮询)
    case err := <-bodyWriter.resc:
        // Prefer the read loop's response, if available. Issue 16102.
        select {
        case re := <-readLoopResCh:
            return handleReadLoopResponse(re)
        default:
        }
        if err != nil {
            cc.forgetStreamID(cs.ID)
            return nil, cs.getStartedWrite(), err
        }
        bodyWritten = true
        if d := cc.responseHeaderTimeout(); d != 0 {
            timer := time.NewTimer(d)
            defer timer.Stop()
            respHeaderTimer = timer.C
        }
    }
}

笔者仅对上面的第二种情况即请求body发送完成进行描述:

  • 能否读到响应,如果能够读取响应则直接返回。
  • 判断请求body是否发送成功,如果发送失败,直接返回。
  • 如果请求body发送成功,则设置响应header的超时时间。

总结

本文主要描述了两个方面的内容:

  1. 确认client和server都支持http2协议,并构建一个http2的连接,同时开启该连接的读循环。
  2. 通过http2连接池获取一个http2连接,并发送请求和读取响应。

预告

鉴于HTTTP2.0的内容较多,且文章篇幅过长时不易阅读,笔者将后续要分析的内容拆为两个部分:

  1. 描述数据帧和流控制以及读循环读到响应并发送给readLoopResCh管道。
  2. http2.0标头压缩逻辑。

最后,衷心希望本文能够对各位读者有一定的帮助。

:

  1. 写本文时, 笔者所用go版本为: go1.14.2。
  2. 本文对h2c的情况不予以考虑。
  3. 因为笔者分析的是请求流程,所以没有在本地搭建server,而是使用了一个支持http2连接的图片一步步的debug。eg: https://dss0.bdstatic.com/5aV...

参考

https://developers.google.com...


有疑问加站长微信联系(非本文作者)

本文来自:Segmentfault

感谢作者:新世界杂货铺

查看原文:Go发起HTTP2.0请求流程分析(前篇)

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

955 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传