前言
今天逛github
时,发现了这款对 SQL 进行优化和改写的自动化工具sora
。感觉挺不错的,就下载学习了一下。这个工具支持的功能比较多,可以作为我们日常开发中的一款辅助工具,现在我就把它推荐给你们~~~github传送门:https://github.com/XiaoMi/soar
背景
在我们日常开发中,优化SQL总是我们日常开发任务之一。例行 SQL 优化,不仅可以提升程序性能,还能够降低线上故障的概率。
目前常用的 SQL 优化方式包括但不限于:业务层优化、SQL逻辑优化、索引优化等。其中索引优化通常通过调整索引或新增索引从而达到 SQL 优化的目的。索引优化往往可以在短时间内产生非常巨大的效果。如果能够将索引优化转化成工具化、标准化的流程,减少人工介入的工作量,无疑会大大提高我们的工作效率。
SOAR(SQL Optimizer And Rewriter) 是一个对 SQL 进行优化和改写的自动化工具。 由小米人工智能与云平台的数据库团队开发与维护。
与业内其他优秀产品对比如下:
SOAR | sqlcheck | pt-query-advisor | SQL Advisor | Inception | sqlautoreview | |
---|---|---|---|---|---|---|
启发式建议 | ✔️ | ✔️ | ✔️ | ❌ | ✔️ | ✔️ |
索引建议 | ✔️ | ❌ | ❌ | ✔️ | ❌ | ✔️ |
查询重写 | ✔️ | ❌ | ❌ | ❌ | ❌ | ❌ |
执行计划展示 | ✔️ | ❌ | ❌ | ❌ | ❌ | ❌ |
Profiling | ✔️ | ❌ | ❌ | ❌ | ❌ | ❌ |
Trace | ✔️ | ❌ | ❌ | ❌ | ❌ | ❌ |
SQL在线执行 | ❌ | ❌ | ❌ | ❌ | ✔️ | ❌ |
数据备份 | ❌ | ❌ | ❌ | ❌ | ✔️ | ❌ |
从上图可以看出,支持的功能丰富,其功能特点如下:
- 跨平台支持(支持 Linux, Mac 环境,Windows 环境理论上也支持,不过未全面测试)
- 目前只支持 MySQL 语法族协议的 SQL 优化
- 支持基于启发式算法的语句优化
- 支持复杂查询的多列索引优化(UPDATE, INSERT, DELETE, SELECT)
- 支持 EXPLAIN 信息丰富解读
- 支持 SQL 指纹、压缩和美化
- 支持同一张表多条 ALTER 请求合并
- 支持自定义规则的 SQL 改写
就介绍这么多吧,既然是SQL优化工具,光说是没有用的,我们还是先用起来看看效果吧。
安装
这里有两种安装方式,如下:
- 下载二进制安装包
$ wget https://github.com/XiaoMi/soar/releases/download/0.11.0/soar.linux-amd64 -O soar
chmod a+x soar
这里建议直接下载最新版,要不会有bug
。
下载好的二进制文件添加到环境变量中即可(不会的谷歌一下吧,这里就不讲了)。
测试一下:
$ echo 'select * from user' | soar.darwin-amd64(根据你自己的二进制文件名来输入)
# Query: AC4262B5AF150CB5
★ ★ ★ ☆ ☆ 75分
```sql
SELECT
*
FROM
USER
```
## 最外层 SELECT 未指定 WHERE 条件
* **Item:** CLA.001
* **Severity:** L4
* **Content:** SELECT 语句没有 WHERE 子句,可能检查比预期更多的行(全表扫描)。对于 SELECT COUNT(\*) 类型的请求如果不要求精度,建议使用 SHOW TABLE STATUS 或 EXPLAIN 替代。
## 不建议使用 SELECT * 类型查询
* **Item:** COL.001
* **Severity:** L1
* **Content:** 当表结构变更时,使用 \* 通配符选择所有列将导致查询的含义和行为会发生更改,可能导致查询返回更多的数据。
- 源码安装
依赖环境:
1. Go 1.10+
2. git
高级依赖(仅面向开发人员)
- mysql 客户端版本需要与容器中MySQL版本相同,避免出现由于认证原因导致无法连接问题
- docker MySQL Server测试容器管理
- govendor Go包管理
- retool 依赖外部代码质量静态检查工具二进制文件管理
生成二进制文件:
go get -d github.com/XiaoMi/soar
cd ${GOPATH}/src/github.com/XiaoMi/soar && make
生成的二进制文件与上面一样,直接放入环境变量即可,这里我没有尝试,靠你们自己踩坑了呦~~~
简单使用
0. 前置准备
准备一个table
,如下:
CREATE TABLE `users` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
`username` varchar(64) NOT NULL DEFAULT '',
`nickname` varchar(255) DEFAULT '',
`password` varchar(256) NOT NULL DEFAULT '',
`salt` varchar(48) NOT NULL DEFAULT '',
`avatar` varchar(128) DEFAULT NULL,
`uptime` datetime DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=utf8mb4
1. 直接输入sql语句(不运行)
$ echo "select * from users" | soar.darwin-amd64
$ # Query: 30AFCB1E1344BEBD
★ ★ ★ ☆ ☆ 75分
```sql
SELECT
*
FROM
users
```
## 最外层 SELECT 未指定 WHERE 条件
* **Item:** CLA.001
* **Severity:** L4
* **Content:** SELECT 语句没有 WHERE 子句,可能检查比预期更多的行(全表扫描)。对于 SELECT COUNT(\*) 类型的请求如果不要求精度,建议使用 SHOW TABLE STATUS 或 EXPLAIN 替代。
## 不建议使用 SELECT * 类型查询
* **Item:** COL.001
* **Severity:** L1
* **Content:** 当表结构变更时,使用 \* 通配符选择所有列将导致查询的含义和行为会发生更改,可能导致查询返回更多的数据。
现在是完全根据SQL语句进行分析的,因为没有连接到mysql
。可以看到,给出的报告也很详细,但是只是空壳子,仅凭SQL
语句给出的分析并不是准确的,所以我们开始接下来的应用。
2. 连接mysql
生成EXPLAIN
分析报告
我们可以在配置文件中配置好mysql
相关的配置,操作如下:
vi soar.yaml
# yaml format config file
online-dsn:
addr: 127.0.0.1:3306
schema: asong
user: root
password: root1997
disable: false
test-dsn:
addr: 127.0.0.1:3306
schema: asong
user: root
password: root1997
disable: false
配置好了,我们来实践一下子吧:
$ echo "SELECT id,username,nickname,password,salt,avatar,uptime FROM users WHERE username = 'asong1111'" | soar.darwin-amd64 -test-dsn="root:root1997@127.0.0.1:3306/asong" -allow-online-as-test -log-output=soar.log
$ # Query: D12A420193AD1674
★ ★ ★ ★ ★ 100分
```sql
SELECT
id, username, nickname, PASSWORD, salt, avatar, uptime
FROM
users
WHERE
username = 'asong1111'
```
## Explain信息
| id | select\_type | table | partitions | type | possible_keys | key | key\_len | ref | rows | filtered | scalability | Extra |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | SIMPLE | *users* | NULL | const | username | username | 258 | const | 1 | ☠️ **100.00%** | ☠️ **O(n)** | NULL |
### Explain信息解读
#### SelectType信息解读
* **SIMPLE**: 简单SELECT(不使用UNION或子查询等).
#### Type信息解读
* **const**: const用于使用常数值比较PRIMARY KEY时, 当查询的表仅有一行时, 使用system. 例:SELECT * FROM tbl WHERE col = 1.
这回结果中多了EXPLAIN信息分析报告。这对于刚开始入门的小伙伴们是友好的,因为我们对Explain
解析的字段并不熟悉,有了它我们可以完美的分析SQL
中的问题,是不是很棒。
3. 语法检查
soar
工具不仅仅可以进行sql
语句分析,还可以进行对sql
语法进行检查,找出其中的问题,来看个例子:
$ echo "selec * from users" | soar.darwin-amd64 -only-syntax-check
At SQL 1 : line 1 column 5 near "selec * from users" (total length 18)
这里select
关键字少了一个t
,运行该指令帮助我们一下就定位了问题,当我们的sql
语句很长时,就可以使用该指令来辅助我们检查SQL
语句是否正确。
4. SQL美化
我们日常开发时,经常会看其他人写的代码,因为水平不一样,所以有些SQL
语句会写的很乱,所以这个工具就派上用场了,我们可以把我们的SQL
语句变得漂亮一些,更容易我们理解哦。
$ echo "SELECT id,username,nickname,password,salt,avatar,uptime FROM users WHERE username = 'asong1111'" | soar.darwin-amd64 -report-type=pretty
SELECT
id, username, nickname, PASSWORD, salt, avatar, uptime
FROM
users
WHERE
username = 'asong1111';
这样看起来是不是更直观了呢~~。
结尾
因为我也才是刚使用这个工具,更多的玩法我还没有发现,以后补充。更多玩法可以自己研究一下,github传送门:https://github.com/XiaoMi/soar。官方文档其实很粗糙,更多方法解锁还要靠自己研究,毕竟源码已经给我们了,对于学习go
也有一定帮助,当作一个小项目慢慢优化岂不是更好呢~~。
好啦,这一篇文章到这就结束了,我们下期见~~。希望对你们有用,又不对的地方欢迎指出,可添加我的golang交流群,我们一起学习交流。
结尾给大家发一个小福利吧,最近我在看[微服务架构设计模式]这一本书,讲的很好,自己也收集了一本PDF,有需要的小伙可以到自行下载。获取方式:关注公众号:[Golang梦工厂],后台回复:[微服务],即可获取。
我翻译了一份GIN中文文档,会定期进行维护,有需要的小伙伴后台回复[gin]即可下载。
翻译了一份Machinery中文文档,会定期进行维护,有需要的小伙伴们后台回复[machinery]即可获取。
我是asong,一名普普通通的程序猿,让gi我一起慢慢变强吧。我自己建了一个golang
交流群,有需要的小伙伴加我vx
,我拉你入群。欢迎各位的关注,我们下期见~~~
推荐往期文章:
- machinery-go异步任务队列
- 十张动图带你搞懂排序算法(附go实现代码)
- Go语言相关书籍推荐(从入门到放弃)
- go参数传递类型
- 手把手教姐姐写消息队列
- 常见面试题之缓存雪崩、缓存穿透、缓存击穿
- 详解Context包,看这一篇就够了!!!
- go-ElasticSearch入门看这一篇就够了(一)
- 面试官:go中for-range使用过吗?这几个问题你能解释一下原因吗
- 学会wire依赖注入、cron定时任务其实就这么简单!
- 听说你还不会jwt和swagger-饭我都不吃了带着实践项目我就来了
- 掌握这些Go语言特性,你的水平将提高N个档次(二)
有疑问加站长微信联系(非本文作者)