一、线程模型
1.1 内核级线程模型
每个线程由内核调度器独立的调度,所以如果一个线程阻塞则不影响其他的线程。
优点:在多核处理器的硬件的支持下,内核空间线程模型支持了真正的并行,当一个线程被阻塞后,允许另一个线程继续执行,所以并发能力较强。
缺点:每创建一个用户级线程都需要创建一个内核级线程与其对应,这样创建线程的开销比较大,会影响到应用程序的性能。
1.2 用户级线程模型
优点: 这种模型的好处是线程上下文切换都发生在用户空间,避免的模态切换(mode switch),从而对于性能有积极的影响。
缺点:所有的线程基于一个内核调度实体即内核线程,这意味着只有一个处理器可以被利用,在多处理器环境下这是不能够被接受的,本质上,用户线程只解决了并发问题,但是没有解决并行问题。如果线程因为 I/O 操作陷入了内核态,内核态线程阻塞等待 I/O 数据,则所有的线程都将会被阻塞,用户空间也可以使用非阻塞而 I/O,但是不能避免性能及复杂度问题。
1.3 两级线程模型
>
二、Go并发调度: G-P-M模型
在操作系统提供的内核线程之上,Go搭建了一个特有的两级线程模型。goroutine机制实现了M : N的线程模型,goroutine机制是协程(coroutine)的一种实现,golang内置的调度器,可以让多核CPU中每个CPU执行一个协程。
Go语言中支撑整个scheduler实现的主要有4个重要结构,分别是M、G、P、Sched, 前三个定义在runtime.h中,Sched定义在proc.c中。
• Sched结构就是调度器,它维护有存储M和G的队列以及调度器的一些状态信息等。
• M结构是Machine,系统线程,它由操作系统管理的,goroutine就是跑在M之上的;M是一个很大的结构,里面维护小对象内存cache(mcache)、当前执行的goroutine、随机数发生器等等非常多的信息。
• P结构是Processor,处理器,它的主要用途就是用来执行goroutine的,它维护了一个goroutine队列,即runqueue。Processor是让我们从N:1调度到M:N调度的重要部分。
• G是goroutine实现的核心结构,它包含了栈,指令指针,以及其他对调度goroutine很重要的信息,例如其阻塞的channel。
有疑问加站长微信联系(非本文作者)