如何实现一个 work-pool

着了迷 · · 577 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

开篇

之前写过一篇文章,它有个响亮的名字: Handling 1 Million Requests per Minute with Go。 这是国外的一个作者写的,我做了一篇说明。起的也是这个标题, 阅读量是我最好的一篇,果然文章都是靠标题出彩的.....

今天偶然看到另一篇文章(原文在文末)。两篇文章原理相似:有一批工作任务(job),通过工作池(worker-pool)的方式,达到多 worker 并发处理 job 的效果。

他们还是有很多不同的点,实现上差别也是蛮大的。

首先上一篇文章我放了一张图片,大概就是上篇整体的工作流。 image

  • 每个 worker 处理完任务就好,不关心结果,不对结果做进一步处理。
  • 只要请求不停止,程序就不会停止,没有控制机制,除非宕机。

这篇文章不同点在于:

首先数据会从 generate (生产数据)->并发处理数据->处理结果聚合。 图大概是这样的, image

然后它可以通过 context.context 达到控制工作池停止工作的效果。

最后通过代码,你会发现它不是传统意义上的 worker-pool,后面会说明。

下图能清晰表达整体流程了。 image

顺便说一句,这篇文章实现的代码比 Handling 1 Million Requests per Minute with Go 的代码简单多了。

首先看 job

package wpool

import (
	"context"
)

type JobID string
type jobType string
type jobMetadata map[string]interface{}

type ExecutionFn func(ctx context.Context, args interface{}) (interface{}, error)

type JobDescriptor struct {
	ID       JobID 
	JType    jobType
	Metadata map[string]interface{}
}

type Result struct {
	Value      interface{}
	Err        error
	Descriptor JobDescriptor
}

type Job struct {
	Descriptor JobDescriptor
	ExecFn     ExecutionFn
	Args       interface{}
}

// 处理 job 逻辑,处理结果包装成 Result 结果
func (j Job) execute(ctx context.Context) Result {
	value, err := j.ExecFn(ctx, j.Args)
	if err != nil {
		return Result{
			Err:        err,
			Descriptor: j.Descriptor,
		}
	}

	return Result{
		Value:      value,
		Descriptor: j.Descriptor,
	}
}
复制代码

这个可以简单过一下。最终每个 job 处理完都会包装成 Result 返回。

下面这段就是核心代码了。

package wpool

import (
	"context"
	"fmt"
	"sync"
)

// 运行中的每个worker
func worker(ctx context.Context, wg *sync.WaitGroup, jobs <-chan Job, results chan<- Result) {
	defer wg.Done()
	for {
		select {
		case job, ok := <-jobs:
			if !ok {
				return
			}
			results <- job.execute(ctx)
		case <-ctx.Done():
			fmt.Printf("cancelled worker. Error detail: %v\n", ctx.Err())
			results <- Result{
				Err: ctx.Err(),
			}
			return
		}
	}
}

type WorkerPool struct {
	workersCount int //worker 数量
	jobs         chan Job // 存储 job 的 channel 
	results      chan Result // 处理完每个 job 对应的 结果集
	Done         chan struct{} //是否结束
}

func New(wcount int) WorkerPool {
	return WorkerPool{
		workersCount: wcount,
		jobs:         make(chan Job, wcount),
		results:      make(chan Result, wcount),
		Done:         make(chan struct{}),
	}
}

func (wp WorkerPool) Run(ctx context.Context) {
	var wg sync.WaitGroup
	for i := 0; i < wp.workersCount; i++ {
		wg.Add(1)
		go worker(ctx, &wg, wp.jobs, wp.results)
	}

	wg.Wait()
	close(wp.Done)
	close(wp.results)
}

func (wp WorkerPool) Results() <-chan Result {
	return wp.results
}

func (wp WorkerPool) GenerateFrom(jobsBulk []Job) {
	for i, _ := range jobsBulk {
		wp.jobs <- jobsBulk[i]
	}
	close(wp.jobs)
}

复制代码

整个 WorkerPool 结构很简单。 jobs 是一个缓冲 channel。每一个任务都会放入 jobs 中等待处理 woker 处理。

results 也是一个通道类型,它的作用是保存每个 job 处理后产生的结果 Result

首先通过 New 初始化一个 worker-pool 工作池,然后执行 Run 开始运行。

func New(wcount int) WorkerPool {
	return WorkerPool{
		workersCount: wcount,
		jobs:         make(chan Job, wcount),
		results:      make(chan Result, wcount),
		Done:         make(chan struct{}),
	}
}
func (wp WorkerPool) Run(ctx context.Context) {
	var wg sync.WaitGroup

	for i := 0; i < wp.workersCount; i++ {
		wg.Add(1)
		go worker(ctx, &wg, wp.jobs, wp.results)
	}

	wg.Wait()
	close(wp.Done)
	close(wp.results)
}
复制代码

初始化的时候传入 worker 数,对应每个 g 运行 work(ctx,&wg,wp.jobs,wp.results),组成了 worker-pool。 同时通过 sync.WaitGroup,我们可以等待所有 worker 工作结束,也就意味着 work-pool 结束工作,当然可能是因为任务处理结束,也可能是被停止了。

每个 job 数据源是如何来的?

// job数据源,把每个 job 放入到 jobs channel 中
func (wp WorkerPool) GenerateFrom(jobsBulk []Job) {
	for i, _ := range jobsBulk {
		wp.jobs <- jobsBulk[i]
	}
	close(wp.jobs)
}
复制代码

对应每个 worker 的工作,

func worker(ctx context.Context, wg *sync.WaitGroup, jobs <-chan Job, results chan<- Result) {
	defer wg.Done()
	for {
		select {
		case job, ok := <-jobs:
			if !ok {
				return
			}
			results <- job.execute(ctx)
		case <-ctx.Done():
			fmt.Printf("cancelled worker. Error detail: %v\n", ctx.Err())
			results <- Result{
				Err: ctx.Err(),
			}
			return
		}
	}
}
复制代码

每个 worker 都尝试从同一个 jobs 获取数据,这是一个典型的 fan-out 模式。 当对应的 g 获取到 job 进行处理后,会把处理结果发送到同一个 results channel 中,这又是一个 fan-in 模式。 当然我们通过 context.Context 可以对每个 worker 做停止运行控制。

最后是处理结果集合,

// 处理结果集
func (wp WorkerPool) Results() <-chan Result {
	return wp.results
}
复制代码

那么整体的测试代码就是:

func TestWorkerPool(t *testing.T) {
	wp := New(workerCount)

	ctx, cancel := context.WithCancel(context.TODO())
	defer cancel()

	go wp.GenerateFrom(testJobs())

	go wp.Run(ctx)

	for {
		select {
		case r, ok := <-wp.Results():
			if !ok {
				continue
			}

			i, err := strconv.ParseInt(string(r.Descriptor.ID), 10, 64)
			if err != nil {
				t.Fatalf("unexpected error: %v", err)
			}

			val := r.Value.(int)
			if val != int(i)*2 {
				t.Fatalf("wrong value %v; expected %v", val, int(i)*2)
			}
		case <-wp.Done:
			return
		default:
		}
	}
}
复制代码

看了代码之后,我们知道,这并不是一个传统意义的 worker-pool。它并不像 Handling 1 Million Requests per Minute with Go 这篇文章一样, 初始化一个真正的 worker-pool,一旦接收到 job,就尝试从池中获取一个 worker, 把对应的 job 交给这个 work 进行处理,等 work 处理完毕,重新进行到工作池中,等待下一次被利用。


有疑问加站长微信联系(非本文作者)

本文来自:掘金

感谢作者:着了迷

查看原文:如何实现一个 work-pool

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

577 次点击  ∙  1 赞  
加入收藏 微博
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传