本文介绍如何在向量检索时将结果按照字段值进行分组返回。
背景介绍
---------------------
在向量检索的实际应用中,有些场景需要将向量检索的结果分组返回。例如:
* 在RAG中,一篇文档往往需要拆分为多个段落,每个段落生成一个向量存入DashVector。在向量检索时,为了结果的多样性,不希望所有结果都来自同一篇文档的段落,而是希望结果返回多篇文档,并且每篇文档下仅返回最相似的若干个段落。
* 在商品图像检索时,每个商品通常有多个商品图片,每个图片生成一个向量存入DashVector。在向量检索时,为了结果的多样性,不希望所有结果都是同一个商品的图片,而是希望返回多样化商品,并且每个商品下仅返回最相似的若干个图片。
向量检索服务DashVector支持分组向量检索,对于上面的两个场景可以通过分组检索Doc接口分别设置`group_by_field`为"文档ID"和"商品ID",然后执行分组向量检索。
使用示例
---------------------
### **前提条件**
* 已创建Cluster
* 已获得API-KEY
* 已安装最新版SDK
### 插入带有Field的数据
**说明**
需要使用您的api-key替换示例中的 YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。
```python
import dashvector
import numpy as np
client = dashvector.Client(
api_key='YOUR_API_KEY',
endpoint='YOUR_CLUSTER_ENDPOINT'
)
ret = client.create(
name='group_by_demo',
dimension=4,
fields_schema={'document_id': str, 'chunk_id': int}
)
assert ret
collection = client.get(name='group_by_demo')
ret = collection.insert([
('1', np.random.rand(4), {'document_id': 'paper-01', 'chunk_id': 1, 'content': 'xxxA'}),
('2', np.random.rand(4), {'document_id': 'paper-01', 'chunk_id': 2, 'content': 'xxxB'}),
('3', np.random.rand(4), {'document_id': 'paper-02', 'chunk_id': 1, 'content': 'xxxC'}),
('4', np.random.rand(4), {'document_id': 'paper-02', 'chunk_id': 2, 'content': 'xxxD'}),
('5', np.random.rand(4), {'document_id': 'paper-02', 'chunk_id': 3, 'content': 'xxxE'}),
('6', np.random.rand(4), {'document_id': 'paper-03', 'chunk_id': 1, 'content': 'xxxF'}),
])
assert ret
```
### 执行分组向量检索
```python
ret = collection.query_group_by(
vector=[0.1, 0.2, 0.3, 0.4],
group_by_field='document_id', # 按document_id字段的值分组
group_count=2, # 返回2个分组
group_topk=2, # 每个分组最多返回2个doc
)
# 判断是否成功
if ret:
print('query_group_by success')
print(len(ret))
print('------------------------')
for group in ret:
print('group key:', group.group_id)
for doc in group.docs:
prefix = ' -'
print(prefix, doc)
```
上面分组检索的示例结果如下:
```plaintext
query_group_by success
4
------------------------
group key: paper-01
- {"id": "2", "fields": {"document_id": "paper-01", "chunk_id": 2, "content": "xxxB"}, "score": 0.6807}
- {"id": "1", "fields": {"document_id": "paper-01", "chunk_id": 1, "content": "xxxA"}, "score": 0.4289}
group key: paper-02
- {"id": "3", "fields": {"document_id": "paper-02", "chunk_id": 1, "content": "xxxC"}, "score": 0.6553}
- {"id": "5", "fields": {"document_id": "paper-02", "chunk_id": 3, "content": "xxxE"}, "score": 0.4401}
```
**限制说明**
-------------------------
**重要**
1. ` group_by_field`只能指定新建Collection时通过`fields_schema`参数定义的Field名称,Schema Free字段不支持分组检索。
2. `group_count`和`group_topk`均为尽力而为参数,实际返回的分组数(`group_count`)和每个分组的doc数(`group_topk`)可能少于所设置的值。DashVector会优先保证分组数(`group_count`)。
3. 过大的`group_count`和`group_topk`会增加索引扫描量,从而导致接口耗时增加。当前`group_count`最大值为64,`group_topk`最大值为16。
有疑问加站长微信联系(非本文作者))