上一篇文章《当我们谈论锁,我们谈什么》 中我提到了锁,准确地说是信号量(semaphore, mutext是semaphore的一种)的实现方式有两种:wait的时候忙等待或者阻塞自己。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
//忙等待 wait(S) { while(S<=0) ; //no-op S-- } //阻塞 wait(semaphore *S) { S->value--; if (S->value < 0) { add this process to S->list; block() } } |
忙等待和阻塞方式各有优劣:
- 忙等待会使CPU空转,好处是如果在当前时间片内锁被其他进程释放,当前进程直接就能拿到锁而不需要CPU进行进程调度了。适用于锁占用时间较短的情况,且不适合于单处理器。
- 阻塞不会导致CPU空转,但是进程切换也需要代价,比如上下文切换,CPU Cache Miss。
下面看一下golang的源码里面是怎么实现锁的。golang里面的锁有两个特性:
1.不支持嵌套锁
2.可以一个goroutine lock,另一个goroutine unlock
互斥锁
golang中的互斥锁定义在src/sync/mutex.go
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
// A Mutex is a mutual exclusion lock. // Mutexes can be created as part of other structures; // the zero value for a Mutex is an unlocked mutex. // // A Mutex must not be copied after first use. type Mutex struct { state int32 sema uint32 } const ( mutexLocked = 1 << iota // mutex is locked mutexWoken mutexWaiterShift = iota ) |
看上去也是使用信号量的方式来实现的。sema就是信号量,一个非负数;state表示Mutex的状态。mutexLocked表示锁是否可用(0可用,1被别的goroutine占用),mutexWoken=2表示mutex是否被唤醒,mutexWaiterShift=2表示统计阻塞在该mutex上的goroutine数目需要移位的数值。将3个常量映射到state上就是
1 2 3 4 5 6 7 8 |
state: |32|31|...|3|2|1| \__________/ | | | | | | | mutex的占用状态(1被占用,0可用) | | | mutex的当前goroutine是否被唤醒 | 当前阻塞在mutex上的goroutine数 |
1.Lock
下面看一下mutex的lock。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
func (m *Mutex) Lock() { // Fast path: grab unlocked mutex. if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) { if race.Enabled { race.Acquire(unsafe.Pointer(m)) } return } awoke := false iter := 0 for { old := m.state new := old | mutexLocked if old&mutexLocked != 0 { if runtime_canSpin(iter) { // Active spinning makes sense. // Try to set mutexWoken flag to inform Unlock // to not wake other blocked goroutines. if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 && atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) { awoke = true } runtime_doSpin() iter++ continue } new = old + 1<<mutexWaiterShift } if awoke { // The goroutine has been woken from sleep, // so we need to reset the flag in either case. if new&mutexWoken == 0 { panic("sync: inconsistent mutex state") } new &^= mutexWoken } if atomic.CompareAndSwapInt32(&m.state, old, new) { if old&mutexLocked == 0 { break } runtime_Semacquire(&m.sema) awoke = true iter = 0 } } if race.Enabled { race.Acquire(unsafe.Pointer(m)) } } |
这里要解释一下atomic.CompareAndSwapInt32()
,atomic
包是由golang提供的low-level的原子操作封装,主要用来解决进程同步为题,官方并不建议直接使用。我在上一篇文章中说过,操作系统级的锁的实现方案是提供原子操作,然后基本上所有锁相关都是通过这些原子操作来实现。CompareAndSwapInt32()
就是int32型数字的compare-and-swap
实现。cas(&addr, old, new)的意思是if *addr==old, *addr=new
。大部分操作系统支持CAS,x86指令集上的CAS汇编指令是CMPXCHG
。下面我们继续看上面的lock函数。
1 2 3 4 5 6 |
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) { if race.Enabled { race.Acquire(unsafe.Pointer(m)) } return } |
首先先忽略race.Enabled相关代码,这个是go做race检测时候用的,这个时候需要带上-race
,则race.Enabled被置为true。Lock函数的入口处先调用CAS尝试去获得锁,如果m.state==0,则将其置为1,并返回。
继续往下看,首先将m.state的值保存到old变量中,new=old|mutexLocked。直接看能让for退出的第三个if条件,首先调用CAS试图将m.state设置成new的值。然后看一下if里面,如果m.state之前的值也就是old如果没有被占用则表示当前goroutine拿到了锁,则break。我们先看一下new的值的变化,第一个if条件里面new = old + 1<<mutexWaiterShift
,结合上面的mutex的state各个位的意义,这句话的意思表示mutex的等待goroutine数目加1。还有awoke为true的情况下,要将m.state的标志位取消掉,也就是这句new &^= mutexWoken
的作用。继续看第三个if条件里面,如果里面的if判断失败,则走到runtime_Semacquire()。
看一下这个函数runtime_Semacquire()
函数,由于golang1.5之后把之前C语言实现的代码都干掉了,所以现在很低层的代码都是go来实现的。通过源码中的定义我们可以知道这个其实就是信号量的wait操作:等待*s>0,然后减1。编译器里使用的是sync_runtime.semacquire()
函数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
// Semacquire waits until *s > 0 and then atomically decrements it. // It is intended as a simple sleep primitive for use by the synchronization // library and should not be used directly. func runtime_Semacquire(s *uint32) //go:linkname sync_runtime_Semacquire sync.runtime_Semacquire func sync_runtime_Semacquire(addr *uint32) { semacquire(addr, true) } func semacquire(addr *uint32, profile bool) { gp := getg() if gp != gp.m.curg { throw("semacquire not on the G stack") } // Easy case. if cansemacquire(addr) { return } // Harder case: // increment waiter count // try cansemacquire one more time, return if succeeded // enqueue itself as a waiter // sleep // (waiter descriptor is dequeued by signaler) s := acquireSudog() root := semroot(addr) t0 := int64(0) s.releasetime = 0 if profile && blockprofilerate > 0 { t0 = cputicks() s.releasetime = -1 } for { lock(&root.lock) // Add ourselves to nwait to disable "easy case" in semrelease. atomic.Xadd(&root.nwait, 1) // Check cansemacquire to avoid missed wakeup. if cansemacquire(addr) { atomic.Xadd(&root.nwait, -1) unlock(&root.lock) break } // Any semrelease after the cansemacquire knows we're waiting // (we set nwait above), so go to sleep. root.queue(addr, s) goparkunlock(&root.lock, "semacquire", traceEvGoBlockSync, 4) if cansemacquire(addr) { break } } if s.releasetime > 0 { blockevent(s.releasetime-t0, 3) } releaseSudog(s) } |
上面的代码有点多,我们只看和锁相关的代码。
1 2 3 4 5 |
root := semroot(addr) //seg 1 atomic.Xadd(&root.nwait, 1) // seg 2 root.queue(addr, s) //seg 3 |
seg 1代码片段semroot()返回结构体semaRoot。存储方式是先对信号量的地址做移位,然后做哈希(对251取模,这个地方为什么是左移3位和对251取模不太明白)。semaRoot相当于和mutex.sema绑定。看一下semaRoot的结构:一个sudog链表和一个nwait整型字段。nwait字段表示该信号量上等待的goroutine数目。head和tail表示链表的头和尾巴,同时为了线程安全,需要使用一个互斥量来保护链表。这个时候细心的同学应该注意到一个问题,我们前面不是从Mutex跟过来的吗,相当于Mutex的实现了使用了Mutex本身?实际上semaRoot里面的mutex只是内部使用的一个简单版本,和sync.Mutex不是同一个。现在把这些倒推回去,runtime_Semacquire()
的作用其实就是semaphore的wait(&s):如果*s<0,则将当前goroutine塞入信号量s关联的goroutine waiting list,并休眠。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
func semroot(addr *uint32) *semaRoot { return &semtable[(uintptr(unsafe.Pointer(addr))>>3)%semTabSize].root } type semaRoot struct { lock mutex head *sudog tail *sudog nwait uint32 // Number of waiters. Read w/o the lock. } // Prime to not correlate with any user patterns. const semTabSize = 251 var semtable [semTabSize]struct { root semaRoot pad [sys.CacheLineSize - unsafe.Sizeof(semaRoot{})]byte } |
现在mutex.Lock()
还剩下runtime_canSpin(iter)
这一段,这个地方其实就是锁的自旋版本。golang对于自旋锁的取舍做了一些限制:1.多核; 2.GOMAXPROCS>1; 3.至少有一个运行的P并且local的P队列为空。golang的自旋尝试只会做几次,并不会一直尝试下去,感兴趣的可以跟一下源码。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
func sync_runtime_canSpin(i int) bool { // sync.Mutex is cooperative, so we are conservative with spinning. // Spin only few times and only if running on a multicore machine and // GOMAXPROCS>1 and there is at least one other running P and local runq is empty. // As opposed to runtime mutex we don't do passive spinning here, // because there can be work on global runq on on other Ps. if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 { return false } if p := getg().m.p.ptr(); !runqempty(p) { return false } return true } func sync_runtime_doSpin() { procyield(active_spin_cnt) } |
Unlock
Mutex的Unlock函数定义如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
// Unlock unlocks m. // It is a run-time error if m is not locked on entry to Unlock. // // A locked Mutex is not associated with a particular goroutine. // It is allowed for one goroutine to lock a Mutex and then // arrange for another goroutine to unlock it. func (m *Mutex) Unlock() { if race.Enabled { _ = m.state race.Release(unsafe.Pointer(m)) } // Fast path: drop lock bit. new := atomic.AddInt32(&m.state, -mutexLocked) if (new+mutexLocked)&mutexLocked == 0 { panic("sync: unlock of unlocked mutex") } old := new for { // If there are no waiters or a goroutine has already // been woken or grabbed the lock, no need to wake anyone. if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken) != 0 { return } // Grab the right to wake someone. new = (old - 1<<mutexWaiterShift) | mutexWoken if atomic.CompareAndSwapInt32(&m.state, old, new) { runtime_Semrelease(&m.sema) return } old = m.state } } |
函数入口处的四行代码和race detection相关,暂时不用管。接下来的四行代码是判断是否是嵌套锁。new是m.state-1之后的值。我们重点看for循环内部的代码。
1 2 3 |
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken) != 0 { return } |
这两句是说:如果阻塞在该锁上的goroutine数目为0或者mutex处于lock或者唤醒状态,则返回。
1 2 3 4 5 |
new = (old - 1<<mutexWaiterShift) | mutexWoken if atomic.CompareAndSwapInt32(&m.state, old, new) { runtime_Semrelease(&m.sema) return } |
这里先将阻塞在mutex上的goroutine数目减一,然后将mutex置于唤醒状态。runtime_Semrelease
和runtime_Semacquire
的作用刚好相反,将阻塞在信号量上goroutine唤醒。有人可能会问唤醒的是哪个goroutine,那么我们可以看一下goroutine wait list的入队列和出队列代码。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
func (root *semaRoot) queue(addr *uint32, s *sudog) { s.g = getg() s.elem = unsafe.Pointer(addr) s.next = nil s.prev = root.tail if root.tail != nil { root.tail.next = s } else { root.head = s } root.tail = s } func (root *semaRoot) dequeue(s *sudog) { if s.next != nil { s.next.prev = s.prev } else { root.tail = s.prev } if s.prev != nil { s.prev.next = s.next } else { root.head = s.next } s.elem = nil s.next = nil s.prev = nil } |
如上所示,wait list入队是插在队尾,出队是从头出。
参考
- 《Go语言学习笔记》
打赏支持我写出更多好文章,谢谢!
打赏作者
打赏支持我写出更多好文章,谢谢!
任选一种支付方式
有疑问加站长微信联系(非本文作者)