甜品店切蛋糕问题(动态规划,Go语言实现)

WAPWO · · 2956 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

甜品店切蛋糕问题(动态规划,Go语言实现)


问题重现:
小Y最近在甜品店工作,其工作是切蛋糕。现在有n个顾客来购买蛋糕,并且每个顾客有一个到达的时间,以及需要买的蛋糕的长度ai。由于小Y每次只能服务一个顾客,【问题严谨性补充:而顾客如果进店没有服务员立刻为他服务,他将离开】所以对于相冲突的顾客没有办法提供服务。问小Y最多能为多少位顾客提供服务。小Y能够决定是否卖蛋糕给某个顾客。如果答应顾客要买长度为ai的切糕,那么小Y还要将蛋糕切成单位长度给顾客。如果对ai的蛋糕切成x和ai-x,所花的时间代价为x*(ai-x)。例如,当一个用户在1时刻,需要长度为4的蛋糕,此时小Y可以将其先切成2分长度为2的,花费为4,再将两段长度为2的分别切成1,1的,花费分别为1和1,则总花费时间为4+1+1 = 6, 则小Y为该用户服务时间为6.

已知第i位顾客进店时间,以及购买蛋糕大小。【作者特别说明:在原题上稍有修改,本文重在讲清思想】

分析:(转载请注明出处和作者名)
涉及问题一:大小为n的蛋糕需要多长时间切成单位长度?

f(x)=x*(n-x) 绘制函数草图可以得到:x=1时得到最小值,也就是说每次1单位1单位的切

用数学归纳法证明上述的解得到的最终和解也是最小的
n=2时 f(x)显然得到的最小解
n=3时 f(x)显然得到的最小解
n=4时 f(x)显然得到的最小解
...
假设n=i-1时也能得到最小解
n=i时
切成x 和(i-x)
显然x必然是前面已经推出的n的一个解,i-x也是前面推出的一个解,而f(x)的最优解和f(i-x)就是每次1单位1单位的切
这时只要保证x*(i-x)值最小即可,最小情况x=1,也就证明了每次1单位1单位的切的解得到的最终和解也是最小的。

 

涉及问题二:已知各位顾客的进店时间和购买蛋糕大小,如何选出最佳服务对象?

这个问题至少可以使用贪心策略来解决,似乎包含了动态规划,看起来很像01背包问题

动态规划:
f[i][t]表示t时间内在前i个人已服务完的服务对象人数
s[i]表示第i个人需要的服务时长
r[i]表示第i个人达到时间点

㈠对于是否选择服务第i个人有两种情形
①选择,但要满足完成第i人的服务后时间不超过t
(如果选择了第i个人,可能就存在不允许选前i-1个人中的某些人)
f[i][t]=f[i-1][r[i]]+1 【t>=r[i]+s[i]】
②不选,不改变在t时间的策略
(之所以不选的原因,就是因为第i个人到时,小Y还没有为前面的人服务完,又或者如果选了第i人会耽误后面更多的人)
f[i][t]=f[i-1][t]
㈡决策退出条件(决策既知条件)
时间没有负数,所以无需判断
i==0 返回1或0 
解释:因为i==0即最后一个人,如果满足条件t >= r[0]+s[0],返回1
㈢决策入口条件
t=max{s[i]+r[i]}


于是可以得出:
状态转移方程为:f[i][t]=max{ f[i-1][t-s[i]] (t>=r[i]+s[i]),
                                               f[i-1][t]}

 

以下给出Go语言实现代码:

package main

import (
	"fmt"
)

/*求最小服务时长,每次1单位1单位的切,得到的是最小解*/
func smin(n int32) int32 {
	if n&1 == 0 {
		return (n / 2) * (n - 1)
	}
	return (n - 1) / 2 * n
}

/*求每个顾客的时间*/
func serverTime(s, lenght []int32, maxLen int32) {
	for i := range lenght {
		s[i] = smin(lenght[i])
	}
}

/*求二者最大值*/
func maxInt32(a, b int32) int32 {
	if a > b {
		return a
	}
	return b
}

/*DP问题核心  作者:天之  CSDN博客:http://blog.csdn.net/WAPWO?viewmode=contents*/
func dptz(i, t int32, r, s []int32) int32 {
	if i == 0 {
		if t >= r[0]+s[0] {
			return 1
		}
		return 0
	}
	if t >= r[i]+s[i] {
		return maxInt32(dptz(i-1, r[i], r, s)+1, dptz(i-1, t, r, s))
	}
	return dptz(i-1, t, r, s)
}

/*求最后结束时间*/
func endTime(r, s []int32) int32 {
	var max, tmp int32 = 0, 0
	for i := range r {
		tmp = r[i] + s[i]
		if max < tmp {
			max = tmp
		}
	}
	return max
}

func main() {
	//蛋糕长度、先来后到的时间和服务时间
	length := []int32{2, 2, 3, 4}
	r := []int32{5, 5, 6, 10}
	s := make([]int32, 4)
	serverTime(s, length, 4)
	fmt.Println(dptz(3, endTime(r, s), r, s))
}


 


有疑问加站长微信联系(非本文作者)

本文来自:CSDN博客

感谢作者:WAPWO

查看原文:甜品店切蛋糕问题(动态规划,Go语言实现)

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

2956 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传