Golang的Interface是个什么鬼

ChamPly · · 909 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

问题概述

Golang的interface,和别的语言是不同的。它不需要显式的implements,只要某个struct实现了interface里的所有函数,编译器会自动认为它实现了这个interface。第一次看到这种设计的时候,我的第一反应是:What the fuck?这种奇葩的设计方式,和主流OO语言显式implement或继承的区别在哪儿呢?

直到看了SICP以后,我的观点发生了变化:Golang的这种方式和Java、C++之流并无本质区别,都是实现多态的具体方式。而所谓多态,就是“一个接口,多种实现”。

SICP里详细解释了为什么同一个接口,需要根据不同的数据类型,有不同的实现;以及如何做到这一点。在这里没有OO的概念,先把OO放到一边,从原理上看一下这是怎么做到的。

先把大概原理放在这里,然后再举例子。为了实现多态,需要维护一张全局的查找表,它的功能是根据类型名和方法名,返回对应的函数入口。当我增加了一种类型,需要把新类型的名字、相应的方法名和实际函数入口添加到表里。这基本上就是所谓的动态绑定了,类似于C++里的vtable。对于SICP中使用的lisp语言来说,这些工作需要手动完成。而对于java,则通过implements完成了这项工作。而golang则用了更加激进的方式,连implements都省了,编译器自动发现自动绑定。

一个复数包的例子

SICP里以复数为例,我用clojure、java和golang分别实现了一下,代码放在https://github.com/nanoix9/golang-interface。这里的目的是实现一个复数包,它支持直角坐标(rectangular)和极坐标(polar)两种实现方式,但是两者以相同的形式提供对外的接口,包括获取实部、虚部、模、辐角四个操作,文中简单起见,仅以获取实部为例。代码中有完整的内容。

Clojure版

对于直角坐标,用一个两个元素的列表表示它,分别是实部和虚部。

(defn make-rect [r i] (list r i))

对于极坐标,也是含有两个元素的列表,分别表示模和辐角

(defn make-polar [abs arg] (list abs arg))

现在要加一个“取实部”的函数get-real。问题来了,我希望这个函数能同时处理两种坐标,而且对于使用者来说,无论使用哪种坐标表示,get-real函数的行为是一致的。最简单的想法是,增加一个tag字段用于区分两种类型,然后get-real根据类型信息执行不同的操作。

为此,定义attach-tagget-tagget-content函数用于关联标签、提取标签和提取内容:

(defn attach-tag [tag data] (list tag data))
(defn get-tag [data-with-tag] (first data-with-tag))
(defn get-content [data-with-tag] (second data-with-tag))

在构造复数的函数中加入tag

(defn make-rect [r i] (attach-tag 'rect (list r i)))
(defn make-polar [abs arg] (attach-tag 'polar (list abs arg)))

get-real函数首先获取tag,根据直角坐标或极坐标执行不同的操作

(defn get-real [c]
  (let [tag (get-tag c)
        num (get-content c)]
    (cond (= tag 'rect) (first num)
          (= tag 'polar) (* (first num) (Math/cos (second num)))
          :else (println "Unknown complex type:" tag))))

但是这样有个问题,如果要加第三种类型怎么办?必须修改get-real函数。也就是说,要增加一种实现,必须改动函数主入口。有没有方法避免呢?答案就是采用前面的查找表(当然这不是唯一方法,SICP中还介绍了消息传递方法,这里就不介绍了)。这个查找表提供get-opput-op两个方法

 (defn get-op [tag op-name] ...
 (defn put-op [tag op-name func] ...)

这里只给出原型,get-op根据类型名和方法名,获取对应的函数入口。而put-op向表中增加类型名、方法名和函数入口。这张表的内容直观上可以这么理解

tag\op-name 'get-real 'get-image ...
'rect get-real-rect get-image-rect ...
'polar get-real-polar get-image-polar ...

于是get-real函数可以这样实现:首先每种类型各自将自己的函数入口添加到查找表

(defn install-rect []
  (letfn [(get-real [c] (first c))]
    put-op 'rect 'get-real get-real))

(defn install-polar []
  (letfn [(get-real [c] (* (first c) (Math/cos (second c))))]
    put-op 'polar 'get-real get-real))

(install-rect)
(install-polar)

注意这里用了局部函数letfn,所以两种类型都用get-real作为函数名并不冲突。

定义apply-generic函数,用来从查找表中获取函数入口,并把tag去掉,将内容和剩余参数送给获取到的函数

(defn apply-generic [op-name tagged-data & args]
  (let [tag (get-tag tagged-data)
        content (get-content tagged-data)
        func (get-op tag op-name)]
    (if (null? func)
        (println "No entry for data type" tag "and method" op-name))
        (apply func (cons content args))))

get-real函数可以实现了

(defn get-real [c]
    (apply-generic 'get-real c))

Java版

Java实现复数包就不需要这么麻烦了,编译器完成了大部分工作。当然Java是静态语言,还有类型检查。

public interface Complex {
    public double getReal();
    ...
}

public class ComplexRect implements Complex {

    private double real;
    private double image;

    public double getReal() {
        return real;
    }

    ...
}

public class ComplexPolar implements Complex {

    private double abs;
    private double arg;

    public double getReal() {
        return abs * Math.cos(arg);
    }

    ...
}

Golang版

Golang和Java的差别就是省去了implements

type Complex interface {
    GetReal() float64
    ...
}

type ComplexRect struct {
    real, image float64
}

func (c ComplexRect) GetReal() float64 {
    return c.real
}

...

type ComplexPolar struct {
    abs, arg float64
}

func (c ComplexPolar) GetReal() float64 {
    return c.abs * math.Cos(c.arg)
}

...

乍一看看不出ComplexRectComplex之间有什么关系,它是隐含的,编译器自动发现。这样的做法更灵活,比如增加一个新的接口类型,编译器会自动发现那些struct实现了该接口,而无需修改struct的代码。如果是java,就必须修改源代码,显式的implements

总结

通过这个问题,我意识到,OO只不过是一种方法,其实本没有什么对象。至于为什么要OO,最根本的,是要实现“一个接口,多种实现”,这就要求接口是稳定的,而实现有可能是多变的。如果接口也是经常变的,那就没必要把接口抽象出来了。至于代码结构是否反映了世界的继承/组合等关系,这并不重要,也不是根本的。重要的是,将稳定的接口和不稳定的实现分离,使得改动某个模块的时候,不至于影响到其他部分。这是软件本质上的复杂性提出的要求,对于大型软件来说,模块的分解和隔离尤为重要。

为了达到这个目的,C++实现了vtable,Java提供了interface,Golang则自动发现这种关系。可以用OO,也可以不用OO。无论语言提供了哪种方式,背后的思想是统一的。甚至我们可以在语言特性满足不了需求的时候,自己实现相关的机制,例如spring,通过xml完成依赖注入,这使得可以在不改动源代码的情况下,用一种实现替换另一种实现。


有疑问加站长微信联系(非本文作者)

本文来自:CSDN博客

感谢作者:ChamPly

查看原文:Golang的Interface是个什么鬼

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

909 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传