理解Docker容器网络之Linux Network Namespace

bigwhite · · 1622 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

由于2016年年中调换工作的原因,对容器网络的研究中断过一段时间。随着当前项目对Kubernetes应用的深入,我感觉之前对于容器网络的粗浅理解已经不够了,容器网络成了摆在前面的“一道坎”。继续深入理解K8s网络、容器网络已经势在必行。而这篇文章就算是一个重新开始,也是对之前浅表理解的一个补充。

我还是先从Docker容器网络入手,虽然Docker与Kubernetes采用了不同的网络模型:K8s是Container Network Interface, CNI模型,而Docker则采用的是Container Network Model, CNM模型。而要了解Docker容器网络,理解Linux Network Namespace是不可或缺的。在本文中我们将尝试理解Linux Network Namespace及相关Linux内核网络设备的概念,并手工模拟Docker容器网络模型的部分实现,包括单机容器网络中的容器与主机连通、容器间连通以及端口映射等。

一、Docker的CNM网络模型

Docker通过libnetwork实现了CNM网络模型。libnetwork设计doc中对CNM模型的简单诠释如下:

img{512x368}

CNM模型有三个组件:

  • Sandbox(沙盒):每个沙盒包含一个容器网络栈(network stack)的配置,配置包括:容器的网口、路由表和DNS设置等。
  • Endpoint(端点):通过Endpoint,沙盒可以被加入到一个Network里。
  • Network(网络):一组能相互直接通信的Endpoints。

光看这些,我们还很难将之与现实中的Docker容器联系起来,毕竟是抽象的模型不对应到实体,总有种漂浮的赶脚。文档中又给出了CNM模型在Linux上的参考实现技术,比如:沙盒的实现可以是一个Linux Network Namespace;Endpoint可以是一对VETH;Network则可以用Linux BridgeVxlan实现。

这些实现技术反倒是比较接地气。之前我们在使用Docker容器时,了解过Docker是用linux network namespace实现的容器网络隔离的。使用docker时,在物理主机或虚拟机上会有一个docker0的linux bridge,brctl show时能看到 docker0上“插上了”好多veth网络设备:

# ip link show
... ...
3: docker0:  mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 02:42:30:11:98:ef brd ff:ff:ff:ff:ff:ff
19: veth4559467@if18:  mtu 1500 qdisc noqueue master docker0 state UP mode DEFAULT group default
    link/ether a6:14:99:52:78:35 brd ff:ff:ff:ff:ff:ff link-netnsid 3
... ...

$ brctl show
bridge name    bridge id        STP enabled    interfaces
... ...
docker0        8000.0242301198ef    no        veth4559467

模型与现实终于有点接驳了!下面我们将进一步深入对这些术语概念的理解。

二、Linux Bridge、VETH和Network Namespace

Linux Bridge,即Linux网桥设备,是Linux提供的一种虚拟网络设备之一。其工作方式非常类似于物理的网络交换机设备。Linux Bridge可以工作在二层,也可以工作在三层,默认工作在二层。工作在二层时,可以在同一网络的不同主机间转发以太网报文;一旦你给一个Linux Bridge分配了IP地址,也就开启了该Bridge的三层工作模式。在Linux下,你可以用iproute2工具包或brctl命令对Linux bridge进行管理。

VETH(Virtual Ethernet )是Linux提供的另外一种特殊的网络设备,中文称为虚拟网卡接口。它总是成对出现,要创建就创建一个pair。一个Pair中的veth就像一个网络线缆的两个端点,数据从一个端点进入,必然从另外一个端点流出。每个veth都可以被赋予IP地址,并参与三层网络路由过程。

关于Linux Bridge和VETH的具体工作原理,可以参考IBM developerWorks上的这篇文章《Linux 上的基础网络设备详解》。

Network namespace,网络名字空间,允许你在Linux创建相互隔离的网络视图,每个网络名字空间都有独立的网络配置,比如:网络设备、路由表等。新建的网络名字空间与主机默认网络名字空间之间是隔离的。我们平时默认操作的是主机的默认网络名字空间。

概念总是抽象的,接下来我们将在一个模拟Docker容器网络的例子中看到这些Linux网络概念和网络设备到底是起到什么作用的以及是如何操作的。

三、用Network namespace模拟Docker容器网络

为了进一步了解network namespace、bridge和veth在docker容器网络中的角色和作用,我们来做一个demo:用network namespace模拟Docker容器网络,实际上Docker容器网络在linux上也是基于network namespace实现的,我们只是将其“自动化”的创建过程做成了“分解动作”,便于大家理解。

1、环境

我们在一台物理机上进行这个Demo实验。物理机安装了Ubuntu 16.04.1,内核版本:4.4.0-57-generic。Docker容器版本:

Client:
 Version:      1.12.1
 API version:  1.24
 Go version:   go1.6.3
 Git commit:   23cf638
 Built:        Thu Aug 18 05:33:38 2016
 OS/Arch:      linux/amd64

Server:
 Version:      1.12.1
 API version:  1.24
 Go version:   go1.6.3
 Git commit:   23cf638
 Built:        Thu Aug 18 05:33:38 2016
 OS/Arch:      linux/amd64

另外,环境中需安装了iproute2和brctl工具。

2、拓扑

我们来模拟一个拥有两个容器的容器桥接网络:

img{512x368}

对应的用手工搭建的模拟版本拓扑如下(由于在同一台主机,模拟版本采用172.16.0.0/16网段):

img{512x368}

3、创建步骤

a) 创建Container_ns1和Container_ns2 network namespace

默认情况下,我们在Host上看到的都是default network namespace的视图。为了模拟容器网络,我们新建两个network namespace:

sudo ip netns add Container_ns1
sudo ip netns add Container_ns2

$ sudo ip netns list
Container_ns2
Container_ns1

创建的ns也可以在/var/run/netns路径下看到:

$ sudo ls /var/run/netns
Container_ns1  Container_ns2

我们探索一下新创建的ns的网络空间(通过ip netns exec命令可以在特定ns的内部执行相关程序,这个exec命令是至关重要的,后续还会发挥更大作用):

$ sudo ip netns exec Container_ns1 ip a
1: lo:  mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

$ sudo ip netns exec Container_ns2 ip a
1: lo:  mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

$ sudo ip netns exec Container_ns2 ip route

可以看到,新建的ns的网络设备只有一个loopback口,并且路由表为空。

b) 创建MyDocker0 bridge

我们在default network namespace下创建MyDocker0 linux bridge:

$ sudo brctl addbr MyDocker0

$ brctl show
bridge name    bridge id        STP enabled    interfaces
MyDocker0        8000.000000000000    no

给MyDocker0分配ip地址并生效该设备,开启三层,为后续充当Gateway做准备:

$ sudo ip addr add 172.16.1.254/16 dev MyDocker0
$ sudo ip link set dev MyDocker0 up

启用后,我们发现default network namespace的路由配置中增加了一条路由:

$ route -n
内核 IP 路由表
目标            网关            子网掩码        标志  跃点   引用  使用 接口
0.0.0.0         10.11.36.1      0.0.0.0         UG    100    0        0 eno1
... ...
172.16.0.0      0.0.0.0         255.255.0.0     U     0      0        0 MyDocker0
... ...
c) 创建VETH,连接两对network namespaces

到目前为止,default ns与Container_ns1、Container_ns2之间还没有任何瓜葛。接下来就是见证奇迹的时刻了。我们通过veth pair建立起多个ns之间的联系:

创建连接default ns与Container_ns1之间的veth pair – veth1和veth1p:

$sudo ip link add veth1 type veth peer name veth1p

$sudo ip -d link show
... ...
21: veth1p@veth1:  mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ether 66:6d:e7:75:3f:43 brd ff:ff:ff:ff:ff:ff promiscuity 0
    veth addrgenmode eui64
22: veth1@veth1p:  mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ether 56:cd:bb:f2:10:3f brd ff:ff:ff:ff:ff:ff promiscuity 0
    veth addrgenmode eui64
... ...

将veth1“插到”MyDocker0这个bridge上:

$ sudo brctl addif MyDocker0 veth1
$ sudo ip link set veth1 up
$ brctl show
bridge name    bridge id        STP enabled    interfaces
MyDocker0        8000.56cdbbf2103f    no        veth1

将veth1p“放入”Container_ns1中:

$ sudo ip link set veth1p netns Container_ns1

$ sudo ip netns exec Container_ns1 ip a
1: lo:  mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
21: veth1p@if22:  mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 66:6d:e7:75:3f:43 brd ff:ff:ff:ff:ff:ff link-netnsid 0

这时,你在default ns中将看不到veth1p这个虚拟网络设备了。按照上面拓扑,位于Container_ns1中的veth应该更名为eth0:

$ sudo ip netns exec Container_ns1 ip link set veth1p name eth0
$ sudo ip netns exec Container_ns1 ip a
1: lo:  mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
21: eth0@if22:  mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 66:6d:e7:75:3f:43 brd ff:ff:ff:ff:ff:ff link-netnsid 0

将Container_ns1中的eth0生效并配置IP地址:

$ sudo ip netns exec Container_ns1 ip link set eth0 up
$ sudo ip netns exec Container_ns1 ip addr add 172.16.1.1/16 dev eth0

赋予IP地址后,自动生成一条直连路由:

sudo ip netns exec Container_ns1 ip route
172.16.0.0/16 dev eth0  proto kernel  scope link  src 172.16.1.1

现在在Container_ns1下可以ping通MyDocker0了,但由于没有其他路由,包括默认路由,ping其他地址还是不通的(比如:docker0的地址:172.17.0.1):

$ sudo ip netns exec Container_ns1 ping -c 3 172.16.1.254
PING 172.16.1.254 (172.16.1.254) 56(84) bytes of data.
64 bytes from 172.16.1.254: icmp_seq=1 ttl=64 time=0.074 ms
64 bytes from 172.16.1.254: icmp_seq=2 ttl=64 time=0.064 ms
64 bytes from 172.16.1.254: icmp_seq=3 ttl=64 time=0.068 ms

--- 172.16.1.254 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.064/0.068/0.074/0.010 ms

$ sudo ip netns exec Container_ns1 ping -c 3 172.17.0.1
connect: Network is unreachable

我们再给Container_ns1添加一条默认路由,让其能ping通物理主机上的其他网络设备或其他ns空间中的网络设备地址:

$ sudo ip netns exec Container_ns1 ip route add default via 172.16.1.254
$ sudo ip netns exec Container_ns1 ip route
default via 172.16.1.254 dev eth0
172.16.0.0/16 dev eth0  proto kernel  scope link  src 172.16.1.1

$ sudo ip netns exec Container_ns1 ping -c 3 172.17.0.1
PING 172.17.0.1 (172.17.0.1) 56(84) bytes of data.
64 bytes from 172.17.0.1: icmp_seq=1 ttl=64 time=0.068 ms
64 bytes from 172.17.0.1: icmp_seq=2 ttl=64 time=0.076 ms
64 bytes from 172.17.0.1: icmp_seq=3 ttl=64 time=0.069 ms

--- 172.17.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.068/0.071/0.076/0.003 ms

不过这时候,如果想在Container_ns1中ping通物理主机之外的地址,比如:google.com,那还是不通的。为什么呢?因为ping的icmp的包的源地址没有做snat(docker是通过设置iptables规则实现的),导致出去的以172.16.1.1为源地址的包“有去无回”了^0^。

接下来,我们按照上述步骤,再创建连接default ns与Container_ns2之间的veth pair – veth2和veth2p,由于步骤相同,这里就不列出那么多信息了,只列出关键操作:

$ sudo ip link add veth2 type veth peer name veth2p
$ sudo brctl addif MyDocker0 veth2
$ sudo ip link set veth2 up
$ sudo ip link set veth2p netns Container_ns2
$ sudo ip netns exec Container_ns2 ip link set veth2p name eth0
$ sudo ip netns exec Container_ns2 ip link set eth0 up
$ sudo ip netns exec Container_ns2 ip addr add 172.16.1.2/16 dev eth0
$ sudo ip netns exec Container_ns2 ip route add default via 172.16.1.254

至此,模拟创建告一段落!两个ns之间以及它们与default ns之间连通了!

$ sudo ip netns exec Container_ns2 ping -c 3 172.16.1.1
PING 172.16.1.1 (172.16.1.1) 56(84) bytes of data.
64 bytes from 172.16.1.1: icmp_seq=1 ttl=64 time=0.101 ms
64 bytes from 172.16.1.1: icmp_seq=2 ttl=64 time=0.083 ms
64 bytes from 172.16.1.1: icmp_seq=3 ttl=64 time=0.087 ms

--- 172.16.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.083/0.090/0.101/0.010 ms

$ sudo ip netns exec Container_ns1 ping -c 3 172.16.1.2
PING 172.16.1.2 (172.16.1.2) 56(84) bytes of data.
64 bytes from 172.16.1.2: icmp_seq=1 ttl=64 time=0.053 ms
64 bytes from 172.16.1.2: icmp_seq=2 ttl=64 time=0.092 ms
64 bytes from 172.16.1.2: icmp_seq=3 ttl=64 time=0.089 ms

--- 172.16.1.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.053/0.078/0.092/0.017 ms

当然此时两个ns之间连通,主要还是通过直连网络,实质上是MyDocker0在二层起到的作用。以在Container_ns1中ping Container_ns2的eth0地址为例:

Container_ns1此时的路由表:

$ sudo ip netns exec Container_ns1 ip route
default via 172.16.1.254 dev eth0
172.16.0.0/16 dev eth0  proto kernel  scope link  src 172.16.1.1

ping 172.16.1.2执行后,根据路由表,将首先匹配到直连网络(第二条),即无需gateway转发便可以直接将数据包送达。arp查询后(要么从arp cache中找到,要么在MyDocker0这个二层交换机中泛洪查询)获得172.16.1.2的mac地址。ip包的目的ip填写172.16.1.2,二层数据帧封包将目的mac填写为刚刚查到的mac地址,通过eth0(172.16.1.1)发送出去。eth0实际上是一个veth pair,另外一端“插”在MyDocker0这个交换机上,因此这一过程就是一个标准的二层交换机的数据报文交换过程, MyDocker0相当于从交换机上的一个端口收到以太帧数据,并将数据从另外一个端口发出去。ping应答包亦如此。

而如果是在Container_ns1中ping某个docker container的地址,比如172.17.0.2。当ping执行后,根据Container_ns1下的路由表,没有匹配到直连网络,只能通过default路由将数据包发给Gateway: 172.16.1.254。虽然都是MyDocker0接收数据,但这次更类似于“数据被直接发到 Bridge 上,而不是Bridge从一个端口接收(这块儿与我之前的文章中的理解稍有差异)”。二层的目的mac地址填写的是gateway 172.16.1.254自己的mac地址(Bridge的mac地址),此时的MyDocker0更像是一块普通网卡的角色,工作在三层。MyDocker0收到数据包后,发现并非是发给自己的ip包,通过主机路由表找到直连链路路由,MyDocker0将数据包Forward到docker0上(封装的二层数据包的目的MAC地址为docker0的mac地址)。此时的docker0也是一种“网卡”的角色,由于目的ip依然不是docker0自身,因此docker0也会继续这一转发流程。通过traceroute可以印证这一过程:

$ sudo ip netns exec Container_ns1  traceroute 172.17.0.2
traceroute to 172.17.0.2 (172.17.0.2), 30 hops max, 60 byte packets
 1  172.16.1.254 (172.16.1.254)  0.082 ms  0.023 ms  0.019 ms
 2  172.17.0.2 (172.17.0.2)  0.054 ms  0.034 ms  0.029 ms

$ sudo ip netns exec Container_ns1  ping -c 3 172.17.0.2
PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=63 time=0.084 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=63 time=0.101 ms
64 bytes from 172.17.0.2: icmp_seq=3 ttl=63 time=0.098 ms

--- 172.17.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.084/0.094/0.101/0.010 ms

现在,你应该大致了解docker engine在创建单机容器网络时都在背后做了哪些手脚了吧(当然,这里只是简单模拟,docker实际做的要比这复杂许多)。

四、基于userland proxy的容器端口映射的模拟

端口映射让位于容器中的service可以将服务范围扩展到主机之外,比如:一个运行于container中的nginx可以通过宿主机的9091端口对外提供http server服务:

$ sudo docker run -d -p 9091:80 nginx:latest
8eef60e3d7b48140c20b11424ee8931be25bc47b5233aa42550efabd5730ac2f

$ curl 10.11.36.15:9091



Welcome to nginx!



Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

容器的端口映射实际是通过docker engine的docker proxy功能实现的。默认情况下,docker engine(截至docker 1.12.1版本)采用userland proxy(–userland-proxy=true)为每个expose端口的容器启动一个proxy实例来做端口流量转发:

$ ps -ef|grep docker-proxy
root     26246  6228  0 16:18 ?        00:00:00 /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 9091 -container-ip 172.17.0.2 -container-port 80

docker-proxy实际上就是在default ns和container ns之间转发流量而已。我们完全可以模拟这一过程。

我们创建一个fileserver demo:

//testfileserver.go
package main

import "net/http"

func main() {
    http.ListenAndServe(":8080", http.FileServer(http.Dir(".")))
}

我们在Container_ns1下启动这个Fileserver service:

$ sudo ip netns exec Container_ns1 ./testfileserver

$ sudo ip netns exec Container_ns1 lsof -i tcp:8080
COMMAND    PID USER   FD   TYPE DEVICE SIZE/OFF NODE NAME
testfiles 3605 root    3u  IPv4 297022      0t0  TCP *:http-alt (LISTEN)

可以看到在Container_ns1下面,8080已经被testfileserver监听,不过在default ns下,8080端口依旧是avaiable的。

接下来,我们在default ns下创建一个简易的proxy:

//proxy.go
... ...

var (
    host          string
    port          string
    container     string
    containerport string
)

func main() {
    flag.StringVar(&host, "host", "0.0.0.0", "host addr")
    flag.StringVar(&port, "port", "", "host port")
    flag.StringVar(&container, "container", "", "container addr")
    flag.StringVar(&containerport, "containerport", "8080", "container port")

    flag.Parse()

    fmt.Printf("%s\n%s\n%s\n%s", host, port, container, containerport)

    ln, err := net.Listen("tcp", host+":"+port)
    if err != nil {
        // handle error
        log.Println("listen error:", err)
        return
    }
    log.Println("listen ok")

    for {
        conn, err := ln.Accept()
        if err != nil {
            // handle error
            log.Println("accept error:", err)
            continue
        }
        log.Println("accept conn", conn)
        go handleConnection(conn)
    }
}

func handleConnection(conn net.Conn) {
    cli, err := net.Dial("tcp", container+":"+containerport)
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    log.Println("dial ", container+":"+containerport, " ok")

    go io.Copy(conn, cli)
    _, err = io.Copy(cli, conn)
    fmt.Println("communication over: error:", err)
}

在default ns下执行:

./proxy -host 0.0.0.0 -port 9090 -container 172.16.1.1 -containerport 8080
0.0.0.0
9090
172.16.1.1
80802017/01/11 17:26:10 listen ok

我们http get一下宿主机的9090端口:

$curl 10.11.36.15:9090
proxy
proxy.go
testfileserver
testfileserver.go

成功获得file list!

proxy的输出日志:

2017/01/11 17:26:16 accept conn &{{0xc4200560e0}}
2017/01/11 17:26:16 dial  172.16.1.1:8080  ok
communication over: error:

由于每个做端口映射的Container都要启动至少一个docker proxy与之配合,一旦运行的container增多,那么docker proxy对资源的消耗将是大大的。因此docker engine在docker 1.6之后(好像是这个版本)提供了基于iptables的端口映射机制,无需再启动docker proxy process了。我们只需修改一下docker engine的启动配置即可:

在使用systemd init system的系统中如果为docker engine配置–userland-proxy=false,可以参考《当Docker遇到systemd》这篇文章。

由于这个与network namespace关系不大,后续单独理解^0^。

六、参考资料

1、《Docker networking cookbook
2、《Docker cookbook

© 2017, bigwhite. 版权所有.


有疑问加站长微信联系(非本文作者)

本文来自:Tony Bai

感谢作者:bigwhite

查看原文:理解Docker容器网络之Linux Network Namespace

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

1622 次点击  ∙  1 赞  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传