* L2-正规化分类
* L2-SVM线性损耗,L1-SVM线性损耗和logistic回归(LR)
* L1-正规化分类(版本1.4)
* L2-SVM线性损耗和logistic回归(LR)
* L2-支持正规化向量回归(版本1.9)
* L2-SVR线性损耗和L1-SVR线性损耗。
安装:
这个软件包依赖LIBLINEAR2.1+和Go 1.6+。请通过自制软件或操作系统上的其他软件包管理器先安装这些:
brew update brew info liblinear # make sure your formula will install version higher than 2.1 brew install liblinear brew info go # make sure version 1.6+ brew install go
用法:
import linear "github.com/lazywei/lineargo" // ReadLibsvm(filepath string, oneBased bool) (X, y *mat64.Dense) X, y := linear.ReadLibsvm("heart_scale", true) // Train(X, y *mat64.Dense, bias float64, solverType int, // C_, p, eps float64,// classWeights map[int]float64) (*Model) // Please checkout liblinear's doc for the explanation for these parameters. model := linear.Train(X, y, -1, linear.L2R_LR, 1.0, 0.1, 0.01, map[int]float64{1: 1, -1: 1}) y_pred:= linear.Predict(model, X) fmt.Println(linear.Accuracy(y, y_pred))