regression Go 的多元线性回归 regression

blov2016-09-18 16:00:09 • 1835 次点击    
这是一个分享于 2016-09-18 16:00:09 的项目,其中的信息可能已经有所发展或是发生改变。

regression 是Go 的多元线性回归。

用法举例:

导入安装包,创建一个回归和数据,并添加进去。你可按照你的需要添加变量,下面实例中我们使用三个变量:

package mainimport (    "fmt"

    "github.com/sajari/regression")func main() {    r := new(regression.Regression)
    r.SetObserved("Murders per annum per 1,000,000 inhabitants")
    r.SetVar(0, "Inhabitants")
    r.SetVar(1, "Percent with incomes below $5000")
    r.SetVar(2, "Percent unemployed")
    r.Train(
        regression.DataPoint(11.2, []float64{587000, 16.5, 6.2}),
        regression.DataPoint(13.4, []float64{643000, 20.5, 6.4}),
        regression.DataPoint(40.7, []float64{635000, 26.3, 9.3}),
        regression.DataPoint(5.3, []float64{692000, 16.5, 5.3}),
        regression.DataPoint(24.8, []float64{1248000, 19.2, 7.3}),
        regression.DataPoint(12.7, []float64{643000, 16.5, 5.9}),
        regression.DataPoint(20.9, []float64{1964000, 20.2, 6.4}),
        regression.DataPoint(35.7, []float64{1531000, 21.3, 7.6}),
        regression.DataPoint(8.7, []float64{713000, 17.2, 4.9}),
        regression.DataPoint(9.6, []float64{749000, 14.3, 6.4}),
        regression.DataPoint(14.5, []float64{7895000, 18.1, 6}),
        regression.DataPoint(26.9, []float64{762000, 23.1, 7.4}),
        regression.DataPoint(15.7, []float64{2793000, 19.1, 5.8}),
        regression.DataPoint(36.2, []float64{741000, 24.7, 8.6}),
        regression.DataPoint(18.1, []float64{625000, 18.6, 6.5}),
        regression.DataPoint(28.9, []float64{854000, 24.9, 8.3}),
        regression.DataPoint(14.9, []float64{716000, 17.9, 6.7}),
        regression.DataPoint(25.8, []float64{921000, 22.4, 8.6}),
        regression.DataPoint(21.7, []float64{595000, 20.2, 8.4}),
        regression.DataPoint(25.7, []float64{3353000, 16.9, 6.7}),
    )
    r.Run()

    fmt.Printf("Regression formula:\n%v\n", r.Formula)
    fmt.Printf("Regression:\n%s\n", r)
}

提醒:你同样可以一个一个地添加数据点。

一旦计算出来,你可以打印数据,检查R ^ 2,方差,残差等,您也可以直接访问该系数的其他

使用

地方。如:

// Get the coefficient for the "Inhabitants" variable 0:c := r.Coeff(0)元
You can also use the model to predict new data points
prediction, err := r.Predict([]float64{587000, 16.5, 6.2})

Multivariable regression library in GoRead More

Latest commit to the master branch on 4-23-2024
Download as zip
授权协议:
MIT
开发语言:
Google Go 查看源码»
操作系统:
跨平台
1835 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传