<p>Hey everyone,</p>
<p>Looking for some feedback on a genetic algorithm library I've been working on for a little while now: <a href="https://github.com/tomcraven/goga">https://github.com/tomcraven/goga</a></p>
<p>I've written a couple of test apps to show it off. The most visual being an image matcher. It takes an input image and tries to get as close to it as it can only using RGBA coloured rects and circles. Here's the end result of it trying to match mona lisa (input, output and overlaid):</p>
<p><a href="http://imgur.com/a/Sr7iD">http://imgur.com/a/Sr7iD</a></p>
<p>Thanks for reading and any feedback.</p>
<hr/>**评论:**<br/><br/>sharptierce: <pre><p>interesting library! </p>
<p>About feedback: you should read (<a href="https://golang.org/doc/effective_go.html#names" rel="nofollow">https://golang.org/doc/effective_go.html#names</a>), because all those IFoobar interfaces are not really best practice. </p></pre>
这是一个分享于 的资源,其中的信息可能已经有所发展或是发生改变。
入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889
- 请尽量让自己的回复能够对别人有帮助
- 支持 Markdown 格式, **粗体**、~~删除线~~、
`单行代码`
- 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
- 图片支持拖拽、截图粘贴等方式上传