<p>Want to test your favorite ML algorithm against some (simulated) LHC data to find the very elusive graviton (boson for gravity)?</p>
<p>You are in for a treat, then:</p>
<p>Machine Learning Challenge at the LHC:
<a href="https://gitlab.cern.ch/IML-WG/IMLWorkshop2017-Challenge">https://gitlab.cern.ch/IML-WG/IMLWorkshop2017-Challenge</a></p>
<p>You can access the data there:
<a href="https://cernbox.cern.ch/index.php/s/64XP0IB92eUkP9T">https://cernbox.cern.ch/index.php/s/64XP0IB92eUkP9T</a></p>
<p>and here is a simple example repo on how to read the data with Go:
<a href="https://github.com/sbinet/iml-workshop-2017">https://github.com/sbinet/iml-workshop-2017</a></p>
<p>Have fun :)</p>
<hr/>**评论:**<br/><br/>chewxy: <pre><p>Damn <a href="/u/sbinet" rel="nofollow">/u/sbinet</a> you HEP guys have all the fun shit</p></pre>sbinet: <pre><p>It's open to everybody :)</p>
<p>(And there will be another challenge for nips 2017, if I am not mistaken...)</p></pre>
这是一个分享于 的资源,其中的信息可能已经有所发展或是发生改变。
入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889
- 请尽量让自己的回复能够对别人有帮助
- 支持 Markdown 格式, **粗体**、~~删除线~~、
`单行代码`
- 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
- 图片支持拖拽、截图粘贴等方式上传