import "crypto/cipher"
cipher包实现了多个标准的用于包装底层块加密算法的加密算法实现。
参见http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html和NIST Special Publication 800-38A。
type Block interface { // 返回加密字节块的大小 BlockSize() int // 加密src的第一块数据并写入dst,src和dst可指向同一内存地址 Encrypt(dst, src []byte) // 解密src的第一块数据并写入dst,src和dst可指向同一内存地址 Decrypt(dst, src []byte) }
Block接口代表一个使用特定密钥的底层块加/解密器。它提供了加密和解密独立数据块的能力。
type BlockMode interface { // 返回加密字节块的大小 BlockSize() int // 加密或解密连续的数据块,src的尺寸必须是块大小的整数倍,src和dst可指向同一内存地址 CryptBlocks(dst, src []byte) }
BlockMode接口代表一个工作在块模式(如CBC、ECB等)的加/解密器。
func NewCBCEncrypter(b Block, iv []byte) BlockMode
返回一个密码分组链接模式的、底层用b加密的BlockMode接口,初始向量iv的长度必须等于b的块尺寸。
key := []byte("example key 1234") plaintext := []byte("exampleplaintext") // CBC mode works on blocks so plaintexts may need to be padded to the // next whole block. For an example of such padding, see // https://tools.ietf.org/html/rfc5246#section-6.2.3.2. Here we'll // assume that the plaintext is already of the correct length. if len(plaintext)%aes.BlockSize != 0 { panic("plaintext is not a multiple of the block size") } block, err := aes.NewCipher(key) if err != nil { panic(err) } // The IV needs to be unique, but not secure. Therefore it's common to // include it at the beginning of the ciphertext. ciphertext := make([]byte, aes.BlockSize+len(plaintext)) iv := ciphertext[:aes.BlockSize] if _, err := io.ReadFull(rand.Reader, iv); err != nil { panic(err) } mode := cipher.NewCBCEncrypter(block, iv) mode.CryptBlocks(ciphertext[aes.BlockSize:], plaintext) // It's important to remember that ciphertexts must be authenticated // (i.e. by using crypto/hmac) as well as being encrypted in order to // be secure. fmt.Printf("%x\n", ciphertext)
func NewCBCDecrypter(b Block, iv []byte) BlockMode
返回一个密码分组链接模式的、底层用b解密的BlockMode接口,初始向量iv必须和加密时使用的iv相同。
key := []byte("example key 1234") ciphertext, _ := hex.DecodeString("f363f3ccdcb12bb883abf484ba77d9cd7d32b5baecb3d4b1b3e0e4beffdb3ded") block, err := aes.NewCipher(key) if err != nil { panic(err) } // The IV needs to be unique, but not secure. Therefore it's common to // include it at the beginning of the ciphertext. if len(ciphertext) < aes.BlockSize { panic("ciphertext too short") } iv := ciphertext[:aes.BlockSize] ciphertext = ciphertext[aes.BlockSize:] // CBC mode always works in whole blocks. if len(ciphertext)%aes.BlockSize != 0 { panic("ciphertext is not a multiple of the block size") } mode := cipher.NewCBCDecrypter(block, iv) // CryptBlocks can work in-place if the two arguments are the same. mode.CryptBlocks(ciphertext, ciphertext) // If the original plaintext lengths are not a multiple of the block // size, padding would have to be added when encrypting, which would be // removed at this point. For an example, see // https://tools.ietf.org/html/rfc5246#section-6.2.3.2. However, it's // critical to note that ciphertexts must be authenticated (i.e. by // using crypto/hmac) before being decrypted in order to avoid creating // a padding oracle. fmt.Printf("%s\n", ciphertext)
Output:
exampleplaintext
type Stream interface { // 从加密器的key流和src中依次取出字节二者xor后写入dst,src和dst可指向同一内存地址 XORKeyStream(dst, src []byte) }
Stream接口代表一个流模式的加/解密器。
func NewCFBEncrypter(block Block, iv []byte) Stream
返回一个密码反馈模式的、底层用block加密的Stream接口,初始向量iv的长度必须等于block的块尺寸。
key := []byte("example key 1234") plaintext := []byte("some plaintext") block, err := aes.NewCipher(key) if err != nil { panic(err) } // The IV needs to be unique, but not secure. Therefore it's common to // include it at the beginning of the ciphertext. ciphertext := make([]byte, aes.BlockSize+len(plaintext)) iv := ciphertext[:aes.BlockSize] if _, err := io.ReadFull(rand.Reader, iv); err != nil { panic(err) } stream := cipher.NewCFBEncrypter(block, iv) stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext) // It's important to remember that ciphertexts must be authenticated // (i.e. by using crypto/hmac) as well as being encrypted in order to // be secure.
func NewCFBDecrypter(block Block, iv []byte) Stream
返回一个密码反馈模式的、底层用block解密的Stream接口,初始向量iv必须和加密时使用的iv相同。
key := []byte("example key 1234") ciphertext, _ := hex.DecodeString("22277966616d9bc47177bd02603d08c9a67d5380d0fe8cf3b44438dff7b9") block, err := aes.NewCipher(key) if err != nil { panic(err) } // The IV needs to be unique, but not secure. Therefore it's common to // include it at the beginning of the ciphertext. if len(ciphertext) < aes.BlockSize { panic("ciphertext too short") } iv := ciphertext[:aes.BlockSize] ciphertext = ciphertext[aes.BlockSize:] stream := cipher.NewCFBDecrypter(block, iv) // XORKeyStream can work in-place if the two arguments are the same. stream.XORKeyStream(ciphertext, ciphertext) fmt.Printf("%s", ciphertext)
Output:
some plaintext
func NewOFB(b Block, iv []byte) Stream
返回一个输出反馈模式的、底层采用b生成key流的Stream接口,初始向量iv的长度必须等于b的块尺寸。
key := []byte("example key 1234") plaintext := []byte("some plaintext") block, err := aes.NewCipher(key) if err != nil { panic(err) } // The IV needs to be unique, but not secure. Therefore it's common to // include it at the beginning of the ciphertext. ciphertext := make([]byte, aes.BlockSize+len(plaintext)) iv := ciphertext[:aes.BlockSize] if _, err := io.ReadFull(rand.Reader, iv); err != nil { panic(err) } stream := cipher.NewOFB(block, iv) stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext) // It's important to remember that ciphertexts must be authenticated // (i.e. by using crypto/hmac) as well as being encrypted in order to // be secure. // OFB mode is the same for both encryption and decryption, so we can // also decrypt that ciphertext with NewOFB. plaintext2 := make([]byte, len(plaintext)) stream = cipher.NewOFB(block, iv) stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:]) fmt.Printf("%s\n", plaintext2)
Output:
some plaintext
func NewCTR(block Block, iv []byte) Stream
返回一个计数器模式的、底层采用block生成key流的Stream接口,初始向量iv的长度必须等于block的块尺寸。
key := []byte("example key 1234") plaintext := []byte("some plaintext") block, err := aes.NewCipher(key) if err != nil { panic(err) } // The IV needs to be unique, but not secure. Therefore it's common to // include it at the beginning of the ciphertext. ciphertext := make([]byte, aes.BlockSize+len(plaintext)) iv := ciphertext[:aes.BlockSize] if _, err := io.ReadFull(rand.Reader, iv); err != nil { panic(err) } stream := cipher.NewCTR(block, iv) stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext) // It's important to remember that ciphertexts must be authenticated // (i.e. by using crypto/hmac) as well as being encrypted in order to // be secure. // CTR mode is the same for both encryption and decryption, so we can // also decrypt that ciphertext with NewCTR. plaintext2 := make([]byte, len(plaintext)) stream = cipher.NewCTR(block, iv) stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:]) fmt.Printf("%s\n", plaintext2)
Output:
some plaintext
type StreamReader struct { S Stream R io.Reader }
将一个Stream与一个io.Reader接口关联起来,Read方法会调用XORKeyStream方法来处理获取的所有切片。
key := []byte("example key 1234") inFile, err := os.Open("encrypted-file") if err != nil { panic(err) } defer inFile.Close() block, err := aes.NewCipher(key) if err != nil { panic(err) } // If the key is unique for each ciphertext, then it's ok to use a zero // IV. var iv [aes.BlockSize]byte stream := cipher.NewOFB(block, iv[:]) outFile, err := os.OpenFile("decrypted-file", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600) if err != nil { panic(err) } defer outFile.Close() reader := &cipher.StreamReader{S: stream, R: inFile} // Copy the input file to the output file, decrypting as we go. if _, err := io.Copy(outFile, reader); err != nil { panic(err) } // Note that this example is simplistic in that it omits any // authentication of the encrypted data. It you were actually to use // StreamReader in this manner, an attacker could flip arbitrary bits in // the output.
func (r StreamReader) Read(dst []byte) (n int, err error)
type StreamWriter struct { S Stream W io.Writer Err error // unused }
将一个Stream与一个io.Writer接口关联起来,Write方法会调用XORKeyStream方法来处理提供的所有切片。如果Write方法返回的n小于提供的切片的长度,则表示StreamWriter不同步,必须丢弃。StreamWriter没有内建的缓存,不需要调用Close方法去清空缓存。
key := []byte("example key 1234") inFile, err := os.Open("plaintext-file") if err != nil { panic(err) } defer inFile.Close() block, err := aes.NewCipher(key) if err != nil { panic(err) } // If the key is unique for each ciphertext, then it's ok to use a zero // IV. var iv [aes.BlockSize]byte stream := cipher.NewOFB(block, iv[:]) outFile, err := os.OpenFile("encrypted-file", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600) if err != nil { panic(err) } defer outFile.Close() writer := &cipher.StreamWriter{S: stream, W: outFile} // Copy the input file to the output file, encrypting as we go. if _, err := io.Copy(writer, inFile); err != nil { panic(err) } // Note that this example is simplistic in that it omits any // authentication of the encrypted data. It you were actually to use // StreamReader in this manner, an attacker could flip arbitrary bits in // the decrypted result.
func (w StreamWriter) Write(src []byte) (n int, err error)
func (w StreamWriter) Close() error
如果w.W字段实现了io.Closer接口,本方法会调用其Close方法并返回该方法的返回值;否则不做操作返回nil。
type AEAD interface { // 返回提供给Seal和Open方法的随机数nonce的字节长度 NonceSize() int // 返回原始文本和加密文本的最大长度差异 Overhead() int // 加密并认证明文,认证附加的data,将结果添加到dst,返回更新后的切片。 // nonce的长度必须是NonceSize()字节,且对给定的key和时间都是独一无二的。 // plaintext和dst可以是同一个切片,也可以不同。 Seal(dst, nonce, plaintext, data []byte) []byte // 解密密文并认证,认证附加的data,如果认证成功,将明文添加到dst,返回更新后的切片。 // nonce的长度必须是NonceSize()字节,nonce和data都必须和加密时使用的相同。 // ciphertext和dst可以是同一个切片,也可以不同。 Open(dst, nonce, ciphertext, data []byte) ([]byte, error) }
AEAD接口是一种提供了使用关联数据进行认证加密的功能的加密模式。
func NewGCM(cipher Block) (AEAD, error)
函数用迦洛瓦计数器模式包装提供的128位Block接口,并返回AEAD接口。