开源书籍:数据结构和算法(Golang实现)系列之:快速排序

hunterhug · · 1496 次点击 · 开始浏览    置顶
这是一个创建于 的主题,其中的信息可能已经有所发展或是发生改变。

开源书籍:数据结构和算法(Golang实现)系列之:快速排序 如何建议和贡献自己的知识库,可以前往 [https://github.com/hunterhug/goa.c](https://github.com/hunterhug/goa.c) 的仓库提 `PR` 和 建议。所有章节的代码可以在 [这里](https://github.com/hunterhug/goa.c/tree/develop/code) 找到。 # 快速排序 快速排序是一种分治策略的排序算法,是由英国计算机科学家 `Tony Hoare` 发明的, 该算法被发布在 `1961` 年的 `Communications of the ACM 国际计算机学会月刊`。 注: `ACM = Association for Computing Machinery`,国际计算机学会,世界性的计算机从业员专业组织,创立于1947年,是世界上第一个科学性及教育性计算机学会。 快速排序是对冒泡排序的一种改进,也属于交换类的排序算法。 ## 一、算法介绍 快速排序通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 步骤如下: 1. 先从数列中取出一个数作为基准数。一般取第一个数。 2. 分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。 3. 再对左右区间重复第二步,直到各区间只有一个数。 举一个例子:`5 9 1 6 8 14 6 49 25 4 6 3`。 ``` 一般取第一个数 5 作为基准,从它左边和最后一个数使用[]进行标志, 如果左边的数比基准数大,那么该数要往右边扔,也就是两个[]数交换,这样大于它的数就在右边了,然后右边[]数左移,否则左边[]数右移。 5 [9] 1 6 8 14 6 49 25 4 6 [3] 因为 9 > 5,两个[]交换位置后,右边[]左移 5 [3] 1 6 8 14 6 49 25 4 [6] 9 因为 3 !> 5,两个[]不需要交换,左边[]右移 5 3 [1] 6 8 14 6 49 25 4 [6] 9 因为 1 !> 5,两个[]不需要交换,左边[]右移 5 3 1 [6] 8 14 6 49 25 4 [6] 9 因为 6 > 5,两个[]交换位置后,右边[]左移 5 3 1 [6] 8 14 6 49 25 [4] 6 9 因为 6 > 5,两个[]交换位置后,右边[]左移 5 3 1 [4] 8 14 6 49 [25] 6 6 9 因为 4 !> 5,两个[]不需要交换,左边[]右移 5 3 1 4 [8] 14 6 49 [25] 6 6 9 因为 8 > 5,两个[]交换位置后,右边[]左移 5 3 1 4 [25] 14 6 [49] 8 6 6 9 因为 25 > 5,两个[]交换位置后,右边[]左移 5 3 1 4 [49] 14 [6] 25 8 6 6 9 因为 49 > 5,两个[]交换位置后,右边[]左移 5 3 1 4 [6] [14] 49 25 8 6 6 9 因为 6 > 5,两个[]交换位置后,右边[]左移 5 3 1 4 [14] 6 49 25 8 6 6 9 两个[]已经汇总,因为 14 > 5,所以 5 和[]之前的数 4 交换位置 第一轮切分结果:4 3 1 5 14 6 49 25 8 6 6 9 现在第一轮快速排序已经将数列分成两个部分: 4 3 1 和 14 6 49 25 8 6 6 9 左边的数列都小于 5,右边的数列都大于 5。 使用递归分别对两个数列进行快速排序。 ``` 快速排序主要靠基准数进行切分,将数列分成两部分,一部分比基准数都小,一部分比基准数都大。 在最好情况下,每一轮都能平均切分,这样遍历元素只要 `n/2` 次就可以把数列分成两部分,每一轮的时间复杂度都是:`O(n)`。因为问题规模每次被折半,折半的数列继续递归进行切分,也就是总的时间复杂度计算公式为: `T(n) = 2*T(n/2) + O(n)`。按照主定理公式计算,我们可以知道时间复杂度为:`O(nlogn)`,当然我们可以来具体计算一下: ``` 我们来分析最好情况,每次切分遍历元素的次数为 n/2 T(n) = 2*T(n/2) + n/2 T(n/2) = 2*T(n/4) + n/4 T(n/4) = 2*T(n/8) + n/8 T(n/8) = 2*T(n/16) + n/16 ... T(4) = 2*T(2) + 4 T(2) = 2*T(1) + 2 T(1) = 1 进行合并也就是: T(n) = 2*T(n/2) + n/2 = 2^2*T(n/4)+ n/2 + n/2 = 2^3*T(n/8) + n/2 + n/2 + n/2 = 2^4*T(n/16) + n/2 + n/2 + n/2 + n/2 = ... = 2^logn*T(1) + logn * n/2 = 2^logn + 1/2*nlogn = n + 1/2*nlogn 因为当问题规模 n 趋于无穷大时 nlogn 比 n 大,所以 T(n) = O(nlogn)。 最好时间复杂度为:O(nlogn)。 ``` 最差的情况下,每次都不能平均地切分,每次切分都因为基准数是最大的或者最小的,不能分成两个数列,这样时间复杂度变为了 `T(n) = T(n-1) + O(n)`,按照主定理计算可以知道时间复杂度为:`O(n^2)`,我们可以来实际计算一下: ``` 我们来分析最差情况,每次切分遍历元素的次数为 n T(n) = T(n-1) + n = T(n-2) + n-1 + n = T(n-3) + n-2 + n-1 + n = ... = T(1) + 2 +3 + ... + n-2 + n-1 + n = O(n^2) 最差时间复杂度为:O(n^2)。 ``` 根据熵的概念,数量越大,随机性越高,越自发无序,所以待排序数据规模非常大时,出现最差情况的情形较少。在综合情况下,快速排序的平均时间复杂度为:`O(nlogn)`。对比之前介绍的排序算法,快速排序比那些动不动就是平方级别的初级排序算法更佳。 切分的结果极大地影响快速排序的性能,为了避免切分不均匀情况的发生,有几种方法改进: 1. 每次进行快速排序切分时,先将数列随机打乱,再进行切分,这样随机加了个震荡,减少不均匀的情况。当然,也可以随机选择一个基准数,而不是选第一个数。 2. 每次取数列头部,中部,尾部三个数,取三个数的中位数为基准数进行切分。 方法 1 相对好,而方法 2 引入了额外的比较操作,一般情况下我们可以随机选择一个基准数。 快速排序使用原地排序,存储空间复杂度为:`O(1)`。而因为递归栈的影响,递归的程序栈开辟的层数范围在 `logn~n`,所以递归栈的空间复杂度为:`O(logn)~log(n)`,最坏为:`log(n)`,当元素较多时,程序栈可能溢出。通过改进算法,使用伪尾递归进行优化,递归栈的空间复杂度可以减小到 `O(logn)`,可以见下面算法优化。 快速排序是不稳定的,因为切分过程中进行了交换,相同值的元素可能发生位置变化。 ## 二、算法实现 ```go package main import "fmt" // 普通快速排序 func QuickSort(array []int, begin, end int) { if begin < end { // 进行切分 loc := partition(array, begin, end) // 对左部分进行快排 QuickSort(array, begin, loc-1) // 对右部分进行快排 QuickSort(array, loc+1, end) } } // 切分函数,并返回切分元素的下标 func partition(array []int, begin, end int) int { i := begin + 1 // 将array[begin]作为基准数,因此从array[begin+1]开始与基准数比较! j := end // array[end]是数组的最后一位 // 没重合之前 for i < j { if array[i] > array[begin] { array[i], array[j] = array[j], array[i] // 交换 j-- } else { i++ } } /* 跳出while循环后,i = j。 * 此时数组被分割成两个部分 --> array[begin+1] ~ array[i-1] < array[begin] * --> array[i+1] ~ array[end] > array[begin] * 这个时候将数组array分成两个部分,再将array[i]与array[begin]进行比较,决定array[i]的位置。 * 最后将array[i]与array[begin]交换,进行两个分割部分的排序!以此类推,直到最后i = j不满足条件就退出! */ if array[i] >= array[begin] { // 这里必须要取等“>=”,否则数组元素由相同的值组成时,会出现错误! i-- } array[begin], array[i] = array[i], array[begin] return i } func main() { list := []int{5} QuickSort(list, 0, len(list)-1) fmt.Println(list) list1 := []int{5, 9} QuickSort(list1, 0, len(list1)-1) fmt.Println(list1) list2 := []int{5, 9, 1} QuickSort(list2, 0, len(list2)-1) fmt.Println(list2) list3 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3} QuickSort(list3, 0, len(list3)-1) fmt.Println(list3) } ``` 输出: ```go [5] [5 9] [1 5 9] [1 3 4 5 6 6 6 8 9 14 25 49] ``` 示例图: ![](../../picture/quick_sort.png) 快速排序,每一次切分都维护两个下标,进行推进,最后将数列分成两部分。 ## 三、算法改进 快速排序可以继续进行算法改进。 1. 在小规模数组的情况下,直接插入排序的效率最好,当快速排序递归部分进入小数组范围,可以切换成直接插入排序。 2. 排序数列可能存在大量重复值,使用三向切分快速排序,将数组分成三部分,大于基准数,等于基准数,小于基准数,这个时候需要维护三个下标。 3. 使用伪尾递归减少程序栈空间占用,使得栈空间复杂度从 `O(logn)~log(n)` 变为:`O(logn)`。 ### 3.1 改进:小规模数组使用直接插入排序 ```go func QuickSort1(array []int, begin, end int) { if begin < end { // 当数组小于 4 时使用直接插入排序 if end-begin <= 4 { InsertSort(array[begin : end+1]) return } // 进行切分 loc := partition(array, begin, end) // 对左部分进行快排 QuickSort1(array, begin, loc-1) // 对右部分进行快排 QuickSort1(array, loc+1, end) } } ``` 直接插入排序在小规模数组下效率极好,我们只需将 `end-begin <= 4` 的递归部分换成直接插入排序,这部分表示小数组排序。 ### 3.2 改进:三向切分 ```go package main import "fmt" // 三切分的快速排序 func QuickSort2(array []int, begin, end int) { if begin < end { // 三向切分函数,返回左边和右边下标 lt, gt := partition3(array, begin, end) // 从lt到gt的部分是三切分的中间数列 // 左边三向快排 QuickSort2(array, begin, lt-1) // 右边三向快排 QuickSort2(array, gt+1, end) } } // 切分函数,并返回切分元素的下标 func partition3(array []int, begin, end int) (int, int) { lt := begin // 左下标从第一位开始 gt := end // 右下标是数组的最后一位 i := begin + 1 // 中间下标,从第二位开始 v := array[begin] // 基准数 // 以中间坐标为准 for i <= gt { if array[i] > v { // 大于基准数,那么交换,右指针左移 array[i], array[gt] = array[gt], array[i] gt-- } else if array[i] < v { // 小于基准数,那么交换,左指针右移 array[i], array[lt] = array[lt], array[i] lt++ i++ } else { i++ } } return lt, gt } ``` 演示: ``` 数列:4 8 2 4 4 4 7 9,基准数为 4 [4] [8] 2 4 4 4 7 [9] 从中间[]开始:8 > 4,中右[]进行交换,右边[]左移 [4] [9] 2 4 4 4 [7] 8 从中间[]开始:9 > 4,中右[]进行交换,右边[]左移 [4] [7] 2 4 4 [4] 9 8 从中间[]开始:7 > 4,中右[]进行交换,右边[]左移 [4] [4] 2 4 [4] 7 9 8 从中间[]开始:4 == 4,不需要交换,中间[]右移 [4] 4 [2] 4 [4] 7 9 8 从中间[]开始:2 < 4,中左[]需要交换,中间和左边[]右移 2 [4] 4 [4] [4] 7 9 8 从中间[]开始:4 == 4,不需要交换,中间[]右移 2 [4] 4 4 [[4]] 7 9 8 从中间[]开始:4 == 4,不需要交换,中间[]右移,因为已经重叠了 第一轮结果:2 4 4 4 4 7 9 8 分成三个数列: 2 4 4 4 4 (元素相同的会聚集在中间数列) 7 9 8 接着对第一个和最后一个数列进行递归即可。 ``` 示例图: ![](../../picture/three_quick_sort.png) 三切分,把小于基准数的扔到左边,大于基准数的扔到右边,相同的元素会进行聚集。 如果存在大量重复元素,排序速度将极大提高,将会是线性时间,因为相同的元素将会聚集在中间,这些元素不再进入下一个递归迭代。 三向切分主要来自荷兰国旗三色问题,该问题由 `Dijkstra` 提出。 ![](../../picture/quick_sort_three_flag.png) 假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上进行这个动作,而且一次只能调换两个旗子。 可以看到,上面的解答相当于使用三向切分一次,只要我们将白色旗子的值设置为 `100`,蓝色的旗子值设置为 `0`,红色旗子值设置为 `200`,以 `100` 作为基准数,第一次三向切分后三种颜色的旗就排好了,因为 `蓝(0)白(100)红(200)`。 注:艾兹格·W·迪科斯彻(`Edsger Wybe Dijkstra`,1930年5月11日~2002年8月6日),荷兰人,计算机科学家,曾获图灵奖。 ### 3.3 改进:伪尾递归优化 ```go // 伪尾递归快速排序 func QuickSort3(array []int, begin, end int) { for begin < end { // 进行切分 loc := partition(array, begin, end) // 那边元素少先排哪边 if loc-begin < end-loc { // 先排左边 QuickSort3(array, begin, loc-1) begin = loc + 1 } else { // 先排右边 QuickSort3(array, loc+1, end) end = loc - 1 } } } ``` 很多人以为这样子是尾递归。其实这样的快排写法是伪装的尾递归,不是真正的尾递归,因为有 `for` 循环,不是直接 `return QuickSort`,递归还是不断地压栈,栈的层次仍然不断地增长。 但是,因为先让规模小的部分排序,栈的深度大大减少,程序栈最深不会超过 `logn` 层,这样堆栈最坏空间复杂度从 `O(n)` 降为 `O(logn)`。 这种优化也是一种很好的优化,因为栈的层数减少了,对于排序十亿个整数,也只要:`log(100 0000 0000)=29.897`,占用的堆栈层数最多 `30` 层,比不进行优化,可能出现的 `O(n)` 常数层好很多。 ## 四、补充:非递归写法 非递归写法仅仅是将之前的递归栈转化为自己维持的手工栈。 ```go // 非递归快速排序 func QuickSort5(array []int) { // 人工栈 helpStack := new(LinkStack) // 第一次初始化栈,推入下标0,len(array)-1,表示第一次对全数组范围切分 helpStack.Push(len(array) - 1) helpStack.Push(0) // 栈非空证明存在未排序的部分 for !helpStack.IsEmpty() { // 出栈,对begin-end范围进行切分排序 begin := helpStack.Pop() // 范围区间左边 end := helpStack.Pop() // 范围 // 进行切分 loc := partition(array, begin, end) // 右边范围入栈 if loc+1 < end { helpStack.Push(end) helpStack.Push(loc + 1) } // 左边返回入栈 if begin < loc-1 { helpStack.Push(loc - 1) helpStack.Push(begin) } } } ``` 本来需要进行递归的数组范围 `begin,end`,不使用递归,依次推入自己的人工栈,然后循环对人工栈进行处理。 我们可以看到没有递归,程序栈空间复杂度变为了:`O(1)`,但额外的存储空间产生了。 辅助人工栈结构 `helpStack` 占用了额外的空间,存储空间由原地排序的 `O(1)` 变成了 `O(logn)~log(n)`。 我们可以参考上面的伪尾递归版本,继续优化非递归版本,先让短一点的范围入栈,这样存储复杂度可以变为:`O(logn)`。如: ``` // 非递归快速排序优化 func QuickSort6(array []int) { // 人工栈 helpStack := new(LinkStack) // 第一次初始化栈,推入下标0,len(array)-1,表示第一次对全数组范围切分 helpStack.Push(len(array) - 1) helpStack.Push(0) // 栈非空证明存在未排序的部分 for !helpStack.IsEmpty() { // 出栈,对begin-end范围进行切分排序 begin := helpStack.Pop() // 范围区间左边 end := helpStack.Pop() // 范围 // 进行切分 loc := partition(array, begin, end) // 切分后右边范围大小 rSize := -1 // 切分后左边范围大小 lSize := -1 // 右边范围入栈 if loc+1 < end { rSize = end - (loc + 1) } // 左边返回入栈 if begin < loc-1 { lSize = loc - 1 - begin } // 两个范围,让范围小的先入栈,减少人工栈空间 if rSize != -1 && lSize != -1 { if lSize > rSize { helpStack.Push(end) helpStack.Push(loc + 1) helpStack.Push(loc - 1) helpStack.Push(begin) } else { helpStack.Push(loc - 1) helpStack.Push(begin) helpStack.Push(end) helpStack.Push(loc + 1) } } else { if rSize != -1 { helpStack.Push(end) helpStack.Push(loc + 1) } if lSize != -1 { helpStack.Push(loc - 1) helpStack.Push(begin) } } } } ``` 完整的程序如下: ```go package main import ( "fmt" "sync" ) // 链表栈,后进先出 type LinkStack struct { root *LinkNode // 链表起点 size int // 栈的元素数量 lock sync.Mutex // 为了并发安全使用的锁 } // 链表节点 type LinkNode struct { Next *LinkNode Value int } // 入栈 func (stack *LinkStack) Push(v int) { stack.lock.Lock() defer stack.lock.Unlock() // 如果栈顶为空,那么增加节点 if stack.root == nil { stack.root = new(LinkNode) stack.root.Value = v } else { // 否则新元素插入链表的头部 // 原来的链表 preNode := stack.root // 新节点 newNode := new(LinkNode) newNode.Value = v // 原来的链表链接到新元素后面 newNode.Next = preNode // 将新节点放在头部 stack.root = newNode } // 栈中元素数量+1 stack.size = stack.size + 1 } // 出栈 func (stack *LinkStack) Pop() int { stack.lock.Lock() defer stack.lock.Unlock() // 栈中元素已空 if stack.size == 0 { panic("empty") } // 顶部元素要出栈 topNode := stack.root v := topNode.Value // 将顶部元素的后继链接链上 stack.root = topNode.Next // 栈中元素数量-1 stack.size = stack.size - 1 return v } // 栈是否为空 func (stack *LinkStack) IsEmpty() bool { return stack.size == 0 } // 非递归快速排序 func QuickSort5(array []int) { // 人工栈 helpStack := new(LinkStack) // 第一次初始化栈,推入下标0,len(array)-1,表示第一次对全数组范围切分 helpStack.Push(len(array) - 1) helpStack.Push(0) // 栈非空证明存在未排序的部分 for !helpStack.IsEmpty() { // 出栈,对begin-end范围进行切分排序 begin := helpStack.Pop() // 范围区间左边 end := helpStack.Pop() // 范围 // 进行切分 loc := partition(array, begin, end) // 右边范围入栈 if loc+1 < end { helpStack.Push(end) helpStack.Push(loc + 1) } // 左边返回入栈 if begin < loc-1 { helpStack.Push(loc - 1) helpStack.Push(begin) } } } // 非递归快速排序优化 func QuickSort6(array []int) { // 人工栈 helpStack := new(LinkStack) // 第一次初始化栈,推入下标0,len(array)-1,表示第一次对全数组范围切分 helpStack.Push(len(array) - 1) helpStack.Push(0) // 栈非空证明存在未排序的部分 for !helpStack.IsEmpty() { // 出栈,对begin-end范围进行切分排序 begin := helpStack.Pop() // 范围区间左边 end := helpStack.Pop() // 范围 // 进行切分 loc := partition(array, begin, end) // 切分后右边范围大小 rSize := -1 // 切分后左边范围大小 lSize := -1 // 右边范围入栈 if loc+1 < end { rSize = end - (loc + 1) } // 左边返回入栈 if begin < loc-1 { lSize = loc - 1 - begin } // 两个范围,让范围小的先入栈,减少人工栈空间 if rSize != -1 && lSize != -1 { if lSize > rSize { helpStack.Push(end) helpStack.Push(loc + 1) helpStack.Push(loc - 1) helpStack.Push(begin) } else { helpStack.Push(loc - 1) helpStack.Push(begin) helpStack.Push(end) helpStack.Push(loc + 1) } } else { if rSize != -1 { helpStack.Push(end) helpStack.Push(loc + 1) } if lSize != -1 { helpStack.Push(loc - 1) helpStack.Push(begin) } } } } // 切分函数,并返回切分元素的下标 func partition(array []int, begin, end int) int { i := begin + 1 // 将array[begin]作为基准数,因此从array[begin+1]开始与基准数比较! j := end // array[end]是数组的最后一位 // 没重合之前 for i < j { if array[i] > array[begin] { array[i], array[j] = array[j], array[i] // 交换 j-- } else { i++ } } /* 跳出while循环后,i = j。 * 此时数组被分割成两个部分 --> array[begin+1] ~ array[i-1] < array[begin] * --> array[i+1] ~ array[end] > array[begin] * 这个时候将数组array分成两个部分,再将array[i]与array[begin]进行比较,决定array[i]的位置。 * 最后将array[i]与array[begin]交换,进行两个分割部分的排序!以此类推,直到最后i = j不满足条件就退出! */ if array[i] >= array[begin] { // 这里必须要取等“>=”,否则数组元素由相同的值组成时,会出现错误! i-- } array[begin], array[i] = array[i], array[begin] return i } func main() { list3 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3} QuickSort5(list3) fmt.Println(list3) list4 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3} QuickSort6(list4) fmt.Println(list4) } ``` 输出: ```go [1 3 4 5 6 6 6 8 9 14 25 49] [1 3 4 5 6 6 6 8 9 14 25 49] ``` 使用人工栈替代递归的程序栈,换汤不换药,速度并没有什么变化,但是代码可读性降低。 ## 五、补充:内置库使用快速排序的原因 首先堆排序,归并排序最好最坏时间复杂度都是:`O(nlogn)`,而快速排序最坏的时间复杂度是:`O(n^2)`,但是很多编程语言内置的排序算法使用的仍然是快速排序,这是为什么? 1. 这个问题有偏颇,选择排序算法要看具体的场景,`Linux` 内核用的排序算法就是堆排序,而 `Java` 对于数量比较多的复杂对象排序,内置排序使用的是归并排序,只是一般情况下,快速排序更快。 2. 归并排序有两个稳定,第一个稳定是排序前后相同的元素位置不变,第二个稳定是,每次都是很平均地进行排序,读取数据也是顺序读取,能够利用存储器缓存的特征,比如从磁盘读取数据进行排序。因为排序过程需要占用额外的辅助数组空间,所以这部分有代价损耗,但是原地手摇的归并排序克服了这个缺陷。 3. 复杂度中,大 `O` 有一个常数项被省略了,堆排序每次取最大的值之后,都需要进行节点翻转,重新恢复堆的特征,做了大量无用功,常数项比快速排序大,大部分情况下比快速排序慢很多。但是堆排序时间较稳定,不会出现快排最坏 `O(n^2)` 的情况,且省空间,不需要额外的存储空间和栈空间。 4. 当待排序数量大于16000个元素时,使用自底向上的堆排序比快速排序还快,可见此:[https://core.ac.uk/download/pdf/82350265.pdf](https://core.ac.uk/download/pdf/82350265.pdf)。 5. 快速排序最坏情况下复杂度高,主要在于切分不像归并排序一样平均,而是很依赖基准数的现在,我们通过改进,比如随机数,三切分等,这种最坏情况的概率极大的降低。大多数情况下,它并不会那么地坏,大多数快才是真的块。 6. 归并排序和快速排序都是分治法,排序的数据都是相邻的,而堆排序比较的数可能跨越很大的范围,导致局部性命中率降低,不能利用现代存储器缓存的特征,加载数据过程会损失性能。 对稳定性有要求的,要求排序前后相同元素位置不变,可以使用归并排序,`Java` 中的复杂对象类型,要求排序前后位置不能发生变化,所以小规模数据下使用了直接插入排序,大规模数据下使用了归并排序。 对栈,存储空间有要求的可以使用堆排序,比如 `Linux` 内核栈小,快速排序占用程序栈太大了,使用快速排序可能栈溢出,所以使用了堆排序。 在 `Golang` 中,标准库 `sort` 中对切片进行稳定排序: ```go func SliceStable(slice interface{}, less func(i, j int) bool) { rv := reflectValueOf(slice) swap := reflectSwapper(slice) stable_func(lessSwap{less, swap}, rv.Len()) } func stable_func(data lessSwap, n int) { blockSize := 20 a, b := 0, blockSize for b <= n { insertionSort_func(data, a, b) a = b b += blockSize } insertionSort_func(data, a, n) for blockSize < n { a, b = 0, 2*blockSize for b <= n { symMerge_func(data, a, a+blockSize, b) a = b b += 2 * blockSize } if m := a + blockSize; m < n { symMerge_func(data, a, m, n) } blockSize *= 2 } } ``` 会先按照 `20` 个元素的范围,对整个切片分段进行插入排序,因为小数组插入排序效率高,然后再对这些已排好序的小数组进行归并排序。其中归并排序还使用了原地排序,节约了辅助空间。 而一般的排序: ```go func Slice(slice interface{}, less func(i, j int) bool) { rv := reflectValueOf(slice) swap := reflectSwapper(slice) length := rv.Len() quickSort_func(lessSwap{less, swap}, 0, length, maxDepth(length)) } func quickSort_func(data lessSwap, a, b, maxDepth int) { for b-a > 12 { if maxDepth == 0 { heapSort_func(data, a, b) return } maxDepth-- mlo, mhi := doPivot_func(data, a, b) if mlo-a < b-mhi { quickSort_func(data, a, mlo, maxDepth) a = mhi } else { quickSort_func(data, mhi, b, maxDepth) b = mlo } } if b-a > 1 { for i := a + 6; i < b; i++ { if data.Less(i, i-6) { data.Swap(i, i-6) } } insertionSort_func(data, a, b) } } func doPivot_func(data lessSwap, lo, hi int) (midlo, midhi int) { m := int(uint(lo+hi) >> 1) if hi-lo > 40 { s := (hi - lo) / 8 medianOfThree_func(data, lo, lo+s, lo+2*s) medianOfThree_func(data, m, m-s, m+s) medianOfThree_func(data, hi-1, hi-1-s, hi-1-2*s) } medianOfThree_func(data, lo, m, hi-1) pivot := lo a, c := lo+1, hi-1 for ; a < c && data.Less(a, pivot); a++ { } b := a for { for ; b < c && !data.Less(pivot, b); b++ { } for ; b < c && data.Less(pivot, c-1); c-- { } if b >= c { break } data.Swap(b, c-1) b++ c-- } protect := hi-c < 5 if !protect && hi-c < (hi-lo)/4 { dups := 0 if !data.Less(pivot, hi-1) { data.Swap(c, hi-1) c++ dups++ } if !data.Less(b-1, pivot) { b-- dups++ } if !data.Less(m, pivot) { data.Swap(m, b-1) b-- dups++ } protect = dups > 1 } if protect { for { for ; a < b && !data.Less(b-1, pivot); b-- { } for ; a < b && data.Less(a, pivot); a++ { } if a >= b { break } data.Swap(a, b-1) a++ b-- } } data.Swap(pivot, b-1) return b - 1, c } ``` 快速排序限制程序栈的层数为: `2*ceil(log(n+1))`,当递归超过该层时表示程序栈过深,那么转为堆排序。 上述快速排序还使用了三种优化,第一种是递归时小数组转为插入排序,第二种是使用了中位数基准数,第三种使用了三切分。

有疑问加站长微信联系(非本文作者)

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

1496 次点击  
加入收藏 微博
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传