> 关注公众号【爱发白日梦的后端】分享技术干货、读书笔记、开源项目、实战经验、高效开发工具等,您的关注将是我的更新动力!
在单机程序中,当多个线程或协程同时修改全局变量时,为了保障数据一致性,我们需要引入锁机制,创建临界区。本文将通过一个简单的例子,说明在不加锁的情况下并发计数可能导致的问题,并介绍加锁的解决方案。
## 不加锁的并发计数
```text
package main
import (
"sync"
)
// 全局变量
var counter int
func main() {
var wg sync.WaitGroup
for i := 0; i < 1000; i++ {
wg.Add(1)
go func() {
defer wg.Done()
counter++
}()
}
wg.Wait()
println(counter)
}
```
运行多次得到不同的结果:
```text
❯❯❯ go run local_lock.go
945
❯❯❯ go run local_lock.go
937
❯❯❯ go run local_lock.go
959
```
这是因为多个 goroutine 同时对 counter 进行修改,由于不加锁,存在竞争条件,导致最终的结果不确定。
## 引入互斥锁解决竞争条件
```text
package main
import (
"sync"
)
var counter int
var mu sync.Mutex // 互斥锁
func main() {
var wg sync.WaitGroup
for i := 0; i < 1000; i++ {
wg.Add(1)
go func() {
defer wg.Done()
mu.Lock() // 加锁
counter++
mu.Unlock() // 解锁
}()
}
wg.Wait()
println(counter)
}
```
通过引入互斥锁 sync.Mutex,在对 counter 进行修改前加锁,修改完成后解锁,确保了对 counter 操作的原子性。这样可以稳定地得到正确的计数结果。
```text
❯❯❯ go run local_lock.go
1000
```
# 使用 Trylock 进行单一执行者控制
在某些场景,我们希望某个任务只有单一的执行者,后续的任务在抢锁失败后应放弃执行。这时候可以使用 Trylock。
```text
package main
import (
"sync"
)
// Lock try lock
type Lock struct {
c chan struct{}
}
// NewLock generate a try lock
func NewLock() Lock {
var l Lock
l.c = make(chan struct{}, 1)
l.c <- struct{}{}
return l
}
// Lock try lock, return lock result
func (l Lock) Lock() bool {
lockResult := false
select {
case <-l.c:
lockResult = true
default:
}
return lockResult
}
// Unlock , Unlock the try lock
func (l Lock) Unlock() {
l.c <- struct{}{}
}
var counter int
func main() {
var l = NewLock()
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go func() {
defer wg.Done()
if !l.Lock() {
// log error
println("lock failed")
return
}
counter++
println("current counter", counter)
l.Unlock()
}()
}
wg.Wait()
}
```
这里使用大小为 1 的 channel 模拟 Trylock 的效果。每个 goroutine 尝试加锁,如果成功则继续执行任务,否则放弃执行。
# 基于 Redis 的分布式锁
在分布式场景下,我们需要考虑多台机器之间的数据同步问题。这时候可以使用 Redis 提供的 setnx 命令来实现分布式锁。
```text
package main
import (
"fmt"
"sync"
"time"
"github.com/go-redis/redis"
)
func incr() {
client := redis.NewClient(&redis.Options{
Addr: "localhost:6379",
Password: "", // no password set
DB: 0, // use default DB
})
var lockKey = "counter_lock"
var counterKey = "counter"
// lock
resp := client.SetNX(lockKey, 1, time.Second*5)
lockSuccess, err := resp.Result()
if err != nil || !lockSuccess {
fmt.Println(err, "lock result:", lockSuccess)
return
}
// counter ++
getResp := client.Get(counterKey)
cntValue, err := getResp.Int64()
if err == nil || err == redis.Nil {
cntValue++
resp := client.Set(counterKey, cntValue, 0)
_, err := resp.Result()
if err != nil {
// log err
println("set value error!")
}
}
println("current counter is", cntValue)
delResp := client.Del(lockKey)
unlockSuccess, err := delResp.Result()
if err == nil && unlockSuccess > 0 {
println("unlock success!")
} else {
println("unlock failed", err)
}
}
func main() {
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go func() {
defer wg.Done()
incr()
}()
}
wg.Wait()
}
```
通过 Redis 的 setnx 命令,我们可以实现一个简单的分布式锁。在获取锁成功后执行任务,任务执行完成后释放锁。
# 基于 ZooKeeper 的分布式锁
ZooKeeper 是另一个分布式系统协调服务,它提供了一套强一致性的 API,适用于一些需要高度可靠性的场景。以下是使用 ZooKeeper 实现的分布式锁示例。
```text
package main
import (
"time"
"github.com/samuel/go-zookeeper/zk"
)
func main() {
c, _, err := zk.Connect([]string{"127.0.0.1"}, time.Second) //*10)
if err != nil {
panic(err)
}
l := zk.NewLock(c, "/lock", zk.WorldACL(zk.PermAll))
err = l.Lock()
if err != nil {
panic(err)
}
println("lock succ, do your business logic")
time.Sleep(time.Second * 10)
// do some thing
l.Unlock()
println("unlock succ, finish business logic")
}
```
通过 ZooKeeper 提供的 Lock API,我们可以实
现分布式锁的获取和释放。ZooKeeper 的分布式锁机制通过临时有序节点和 Watch API 实现,保障了强一致性。
# 基于 etcd 的分布式锁
etcd 是近年来备受关注的分布式系统组件,类似于 ZooKeeper,但在某些场景下有更好的性能表现。以下是使用 etcd 实现分布式锁的示例。
```text
package main
import (
"log"
"github.com/zieckey/etcdsync"
)
func main() {
m, err := etcdsync.New("/lock", 10, []string{"<http://127.0.0.1:2379>"})
if m == nil || err != nil {
log.Printf("etcdsync.New failed")
return
}
err = m.Lock()
if err != nil {
log.Printf("etcdsync.Lock failed")
return
}
log.Printf("etcdsync.Lock OK")
log.Printf("Get the lock. Do something here.")
err = m.Unlock()
if err != nil {
log.Printf("etcdsync.Unlock failed")
} else {
log.Printf("etcdsync.Unlock OK")
}
}
```
通过 etcdsync 库,我们可以方便地使用 etcd 实现分布式锁。etcd 提供的分布式锁机制也是基于临时有序节点和 Watch API 实现的。
# 如何选择锁方案
在选择锁方案时,需要根据业务场景和性能需求进行权衡。以下是一些参考因素:
1. 单机锁 vs 分布式锁: 如果业务在单机上,可以考虑使用单机锁。如果是分布式场景,需要使用分布式锁来保障多台机器之间的数据一致性。
2. 锁的粒度: 锁的粒度是指锁定的资源范围,可以是整个应用、某个模块、某个数据表等。根据业务需求选择合适的锁粒度。
3. 性能需求: 不同的锁方案在性能表现上有差异,例如,Redis 的 setnx 是一个简单的分布式锁方案,适用于低频次的锁操作。ZooKeeper 和 etcd 提供的分布式锁机制在一致性上更为强大,但性能相对较低。
4. 可靠性需求: 如果对数据可靠性有极高要求,需要选择提供强一致性保障的分布式锁方案,如 ZooKeeper 或 etcd。
5. 技术栈: 考虑已有技术栈中是否已经包含了适用的锁方案,避免引入新的技术栈增加复杂性。
最终的选择取决于业务需求和系统架构,需要仔细评估各种锁方案的优劣势。
有疑问加站长微信联系(非本文作者)