云HBase小组成功抢救某公司自建HBase集群,挽救30+T数据

maoer · · 540 次点击 · 开始浏览    置顶
这是一个创建于 的主题,其中的信息可能已经有所发展或是发生改变。

摘要: 使用过开源HBase的人都知道,运维HBase是多么复杂的事情,集群大的时候,读写压力大,配置稍微不合理一点,就可能会出现集群状态不一致的情况,糟糕一点的直接导致入库、查询某个业务表不可用, 甚至集群运行不了。 **概述** 使用过开源HBase的人都知道,运维HBase是多么复杂的事情,集群大的时候,读写压力大,配置稍微不合理一点,就可能会出现集群状态不一致的情况,糟糕一点的直接导致入库、查询某个业务表不可用, 甚至集群运行不了。在早期0.9x版本的时候,HBase的修复工具还有一下bug,使得即使你懂得如何修复的情况下,依然需要多次重复运行命令,绕过那些不合理的修复逻辑,甚至有时候需要自己写代码预先修复某个步骤。 **背景** 上周五,某公司使用的某DataHup 大数据产品自建一个HBase集群挂了!整个集群有30+T 业务数据,是公司的数据中心,集群直接启动不了。他们也是经历了熬战一天一夜的情况下,依旧没有解决恢复,还曾有过重装集群重导数据念头。最后,通过钉钉HBase技术交流群找到群主——阿里云HBase的封神。随后其立即下达命令,临时成立 HBase抢救小分队,尽力最大的努力,使用最低风险的方式,抢救最完整的集群。 蹭蹭蹭,几个抢救队员集齐,开始救火。 ![图片描述](http://img.blog.csdn.net/20180418142647198?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) **救火开始** 虽然紧急,但是抢救工作不能乱,我们把救火过程主要分为几步: ![图片描述](http://img.blog.csdn.net/20180418142734739?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) **​1. 定位现象问题所在** ​ 首先与用户沟通现场环境情况,以及客户在出问题之前做过哪些重大操作,特别是一些特殊操作,平时没做过的。据用户描述已经远程观察了解到,用户使用开源的某DataHup自建了一个HBase集群, 存储公司的大量的业务,是公司的数据中心。集群有7个RegionServer、2个Master,32核256G的机器配置,业务数据量有30+T。HBase的master已经都挂了,两个RegionServer也挂了,用户使用过“重启大法”,依旧无法正常运行。 ​寥寥几句没有更多信息,我们只能上集群开日志,打jstack,观察HBase运行流程为什么中断或者挂掉。 ​首先我们先检查HDFS文件系统,fsck发现没有什么异常。其次开始检查HBase,把Debug日志打开,全部关闭HBase集群,为了便于观察现象,只启动一个Master和一个RegionServer。启动后,发现Master 因为fullscan meta表(master启动的一个流程)timeout Abort 终止了。观察meta region分配到的RegionServer也挂了,查看日志并没有异常,貌似是这个开源的DataHup 当RegionServer scan数据操作超时 会被manager kill掉的样子。打jstack发现,Master确实在等待fullscan meta完成,而接管meta region的RegionServer确实一直在忙着scan meta数据,确实有忙不过来超时了。按理说,扫描meta表应该很快的才对。 ​检查发现HDFS的HBase meta表有1T多数据!!!进一步查看现象HFile的内容,发现了大量的Delete famly 的cell存在,而且很多是重复的,序列号(没有截图,想象一下)。问题现象定位了,用户使用这个系列的DataHup 的HBase生态时,有组件存在bug往hbase meta表写了大量的这些冗余的delete数据,导致hbase 启动时full scan meta卡着,最终导致整个集群无法正常启动运行服务。 **2. 提出解决方案,评估风险** 我们很快生成了两个相对较优的方案。第一个是使用离线compaction,把hbase meta表进行一次major compaction把多余的delete family删除,然后再重启即可。第二个方案是,直接移除meta 表的无用hfile, 逆向生成meta 表数据进行修复meta表即可。 第一个方案做离线compaction对集群来说没有什么风险,缺点是离线compaction并不快,因为meta表region只有一个,执行离线meta表compaction时只有一个task,非常的缓慢耗时。 第二个方案是逆向修复meta表信息。看似风险很大,其实实际操作起来,很多风险可以降低。我们可以备份好核心的元数据,只有就可以在恢复失败的时候,还原到原来修复手术的前状态。这样一来,这个修复过程也就风险极大降低了。 **​​3. 开始实施** ​秉着更安全风险更低的情况下,我们还是先选择了方案一,给meta表做离线major compaction的方案。但最终因为MapReduce和本地模式的compaction都太慢了,开始会oom,调整后,最终因meta的hfile checksum校验失败中断了。meta表的hfile都存在问题,那么这个compaction过程就不能正常进行了。 ​我们开始选择方案二,和用户沟通风险后,开始制定操作步骤, 把这个方案的实施带来的风险尽可能降到最低。规避这个方案存在的风险,前提是懂得这个方案会有什么风险。下面我们来分析一下,如图: ![图片描述](http://img.blog.csdn.net/20180418142908284?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast) ​可以看到,开源HBase的meta表,是可以逆向生成回来的,但是有可能不同的DataHup生产商可能会有一些额外的信息hack进meta表里,对于这部分信息,在开源的逆向生成过程中是不包含的,存在这个关系数据丢失。但是这些核心的业务数据都存在,只是hack的第三方关联信息不存在了。有人可能会问,会有哪些数据可能hack到这里呢?曾看到过某厂商会在meta表了多加一些额外的字段用来保存virtual hostname信息,还有一些将二级索引相关的信息会保存在tableinfo 文件那里。HBase的开发商越多,什么姿势都可能存在,这个就是可能的风险点。 ​接下来我们开始实施,这个问题比较典型,用户的meta表里,有1T多的hfile 数据,检查hfile 发现几乎99%的hfile是delete famly相关的内容,我们就移除这些delete famly的hfile到备份目录,只留下一个正常数据的hfile,而这个hfile也仅仅有30M左右的数据。重启HBase后,正常运行。HBase一致性检查发现很幸运,没有坏文件,也没有丢失的tableinfo、regioninfo、hfile相关的block等。如果发现有文件丢失,corrupt hfile等等问题,逆向生成元数据的修复过程就可能会带来风险,但HBase集群核心业务数据依然可以完整挽救。 **4. 用户再自己验证一下是否正常** 通知用户验证集群运行,业务运行情况。 [**原文链接**]( http://click.aliyun.com/m/46528/) **阅读更多干货好文,请关注扫描以下二维码:** ![图片描述](http://img.blog.csdn.net/20180408164102937?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVucWlpbnNpZ2h0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)

有疑问加站长微信联系(非本文作者)

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

540 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传