摘要: 场景 日志服务内置了20+类SQL函数。面对用户复杂的业务场景,例如使用json来沉淀业务数据,普通的SQL函数可能就无法满足需求,需要一些用户自定义处理逻辑。为了处理json类的业务数据,我们可以采用把json展开成多行的形式进行统计分析,今天我们介绍使用UDF(lambda)的方式来编写自定义逻辑,处理json、array、map类型的数据。
场景 日志服务内置了20+类SQL函数。面对用户复杂的业务场景,例如使用json来沉淀业务数据,普通的SQL函数可能就无法满足需求,需要一些用户自定义处理逻辑。为了处理json类的业务数据,我们可以采用把json展开成多行的形式进行统计分析,今天我们介绍使用UDF(lambda)的方式来编写自定义逻辑,处理json、array、map类型的数据。
数据样例:
source: 11.164.232.105 tag:hostname: vm-req-170103232316569850-tianchi111932.tc topic: TestTopic_4 array_column: [1,2,3] double_column: 1.23 map_column: {"a":1,"b":2} text_column: 商品 lambda函数对array类型的数据进行求均值 为了遍历每一个array元素,并且把计算所有元素的均值,我们通过reduce函数进行计算。
- | select array_column, reduce( cast( json_parse(array_column) as array(bigint)) , CAST(ROW(0.0, 0) AS ROW(sum DOUBLE, count INTEGER)) , (s,x) -> cast(row( x+ s.sum, s.count+1) as ROW(sum double, count INTEGER)), s -> IF(s.count = 0, NULL, s.sum / s.count))
reduce 函数的具体语义参考语法文档。参数分为四部分
cast( json_parse(array_column) as array(bigint)) 表示输入的数组数据 CAST(ROW(0.0, 0) AS ROW(sum DOUBLE, count INTEGER)) 定义起始状态为一个复杂的row类型,分别记录sum和count 对每一个元素,计算累加值,(s,x) -> cast(row( x+ s.sum, s.count+1) as ROW(sum double, count INTEGER)) s代表已经有的状态,x代表新输入的元素,计算结果通过cast强制定义为row类型 最后对最终状态,计算avg值,s -> IF(s.count = 0, NULL, s.sum / s.count)。s代表最终状态。 对所有行的array元素求avg:
- | select sum(rows.sum ) / sum(rows.count) from(
select array_column, reduce( cast( json_parse(array_column) as array(bigint)) , CAST(ROW(0.0, 0) AS ROW(sum DOUBLE, count INTEGER)) , (s,x) -> cast(row( x+ s.sum, s.count+1) as ROW(sum double, count INTEGER)), s -> s) as rows from log )
有疑问加站长微信联系(非本文作者)
