数据的核心是云技术和BI。关于大数据和云计算的关系人们通常会有误解,而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理。如果做一个更形象的解释,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化之后再进行分配使用;大数据则相当于海量数据的“数据库”。
整体来看,未来的趋势是,云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,当前的大数据处理一直在向着近似于传统数据库体验的方向发展。
大数据的4V特性,即类型复杂,海量,快速和价值,其总体架构包括三层,数据存储,数据处理和数据分析,三层的相互配合,让大数据最终产生价值。
数据存储层,从存储层的搭建来说,关系型数据库,NoSQL数据库和hdfs分布式文件系统三种存储方式都需要。从用户来讲并不关心底层存储细节,只关心数据的存储和读取的方便性,通过共享数据存储层可以实现在存储上的应用和存储基础设置的彻底解耦。
数据处理层核心解决问题在于数据存储出现分布式后带来的数据处理上的复杂度,海量存储后带来了数据处理上的时效性要求,这些都是数据处理层要解决的问题。
数据分析层重点是真正挖掘大数据的价值所在,而价值的挖掘核心又在于数据分析和挖掘。那么数据分析层核心仍然在于传统的BI分析的内容。包括数据的维度分析,数据的切片,数据的上钻和下钻,cube等。
由此可以看来大数据两大核心为云技术和BI,离开云技术大数据没有根基和落地可能,离开BI和价值,大数据又变化为舍本逐末,丢弃关键目标。简单来说,就是大数据目标驱动是BI,大数据实施落地式云技术。
有疑问加站长微信联系(非本文作者)