Python运行效率低的原因

lnh2017 · · 1821 次点击 · 开始浏览    置顶
这是一个创建于 的主题,其中的信息可能已经有所发展或是发生改变。

Python是一款优雅的编程语言,在人工智能、云计算、大数据飞速发展的今天,Python受到了社会各界的关注,从国内的阿里、搜狐、知乎、腾讯、网易、土豆、新浪到国外的谷歌、Dropbox、Facebook、Redhat、Uber等都在大规模的使用Python完成各种任务! Python的用途越来越广泛,很受欢迎,必然因为其有很多优点,但是Python也拥有一大缺点,相比于C语言,Python运行效率低,那么是什么原因导致的呢? **1. python是动态语言** 动态语言是一类在运行时可以改变其结构的语言,如新的函数、对象、代码可以被引入,已有的函数可以被删除或其他结构上的变化等,该类语言更具有活性,但是不可避免的因为运行时的不确定性也影响运行效率。 **2. python是解释执行** 相比于C语言编译性语言编写的程序,Python是解释执行语言,其运行过程是Python运行文件程序时,Python解释器将源代码转换为字节码,然后再由Python解释器来执行这些字节码。其每次运行都要进行转换成字节码,然后再有虚拟机把字节码转换成机器语言,最后才能在硬件上运行,与编译性语言相比,其过程更复杂,性能肯定会受影响。 **3. Python中一切都是对象** Python是一门面向对象的编程语言,其设计理念是一切皆是对象,如数字、字符串、元组、列表、字典、函数、方法、类、模块等都是对象,包括代码,每个对象都需要维护引用计数,因此,增加了额外工作,影响了性能。 **4. Python GIL** GIL是Python最为诟病的一点,因为GIL,Python中的多线程并不能真正的并发,即使在单线程,GIL也会带来很大的性能影响,因为python每执行100个opcode就会尝试线程的切换,因此,影响Python运行效率。 **5. 垃圾回收** Python采用标记和分代的垃圾回收策略,每次垃圾回收的时候都会中断正在执行的程序,造成所谓的顿卡,影响运行效率。 以上是影响Python运行效率的五大原因,那么该如何进行优化呢?这个就需要您进行下一步的深入了解啦!

有疑问加站长微信联系(非本文作者)

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

1821 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传