## 什么是Radix Tree
  在计算机科学中,基数树,或称Patricia trie/tree,或crit bit tree,压缩前缀树,是一种更节省空间的Trie(前缀树)。对于基数树的每个节点,如果该节点是唯一的子树的话,就和父节点合并。
![radix_tree.png](https://static.studygolang.com/190620/9b56abe61d0af97926c25557ee3b7e82.png)
  golang的web框架`echo`和`gin`都使用了`radix tree`作为路由查找的算法,我们以gin的实现来分析一下。
  在gin的路由中,每一个`Http Method`(GET, PUT, POST…)都对应了一棵 `radix tree`
```
func (engine *Engine) addRoute(method, path string, handlers HandlersChain) {
// ...
// 获取method对应的树,如果没有就创建
root := engine.trees.get(method)
if root == nil {
// 创建radix tree,只有根节点
root = new(node)
engine.trees = append(engine.trees, methodTree{method: method, root: root})
}
root.addRoute(path, handlers)
}
```
`radix tree`可以被认为是一棵简洁版的前缀树。拥有共同前缀的节点也共享同一个父节点。下面是一个`GET`方法对应的路由树的结构:
```
Priority Path Handle
9 \ *<1>
3 ├s nil
2 |├earch\ *<2>
1 |└upport\ *<3>
2 ├blog\ *<4>
1 | └:post nil
1 | └\ *<5>
2 ├about-us\ *<6>
1 | └team\ *<7>
1 └contact\ *<8>
```
`*<num>`是方法(handler)对应的指针,从根节点遍历到叶子节点我们就能得到完整的路由表,图中的示例实现了以下路由:
```
GET("/", func1)
GET("/search/", func2)
GET("/support/", func3)
GET("/blog/", func4)
GET("/blog/:post/", func5)
GET("/about-us/", func6)
GET("/about-us/team/", func7)
GET("/contact/", func8)
```
  `:post`是真实的`post name`的一个占位符(就是一个参数)。这里体现了radix tree相较于hash-map的一个优点,树结构允许我们的路径中存在动态的部分(参数),因为我们匹配的是路由的模式而不是hash值
  为了更具扩展性,每一层的节点按照priority排序,priority是节点的子节点(儿子节点,孙子节点等)注册的handler的数量,这样做有两个好处:
- 被最多路径包含的节点会被最先评估。这样可以让尽量多的路由快速被定位。
- 有点像成本补偿。最长的路径可以被最先评估,补偿体现在最长的路径需要花费更长的时间来定位,如果最长路径的节点能被优先评估(即每次拿子节点都命中),那么所花时间不一定比短路径的路由长。下面展示了节点(每个-可以看做一个节点)评估的路径:从左到右,从上到下
```
├------------
├---------
├-----
├----
├--
├--
└-
```
## 节点数据结构
节点的数据结构如下:
```
type node struct {
// 节点路径,比如上面的s,earch,和upport
path string
// 节点是否是参数节点,比如上面的:post
wildChild bool
// 节点类型,包括static, root, param, catchAll
// static: 静态节点,比如上面的s,earch等节点
// root: 树的根节点
// catchAll: 有*匹配的节点
// param: 参数节点
nType nodeType
// 路径上最大参数个数
maxParams uint8
// 和children字段对应, 保存的是分裂的分支的第一个字符
// 例如search和support, 那么s节点的indices对应的"eu"
// 代表有两个分支, 分支的首字母分别是e和u
indices string
// 儿子节点
children []*node
// 处理函数
handlers HandlersChain
// 优先级,子节点注册的handler数量
priority uint32
}
```
## 添加路由
```
func (n *node) addRoute(path string, handlers HandlersChain) {
fullPath := path
n.priority++
numParams := countParams(path)
// non-empty tree
if len(n.path) > 0 || len(n.children) > 0 {
walk:
for {
// Update maxParams of the current node
if numParams > n.maxParams {
n.maxParams = numParams
}
// Find the longest common prefix.
// This also implies that the common prefix contains no ':' or '*'
// since the existing key can't contain those chars.
i := 0
max := min(len(path), len(n.path))
for i < max && path[i] == n.path[i] {
i++
}
// Split edge
// 开始分裂,比如一开始path是search,新来了support,s是他们匹配的部分,
// 那么会将s拿出来作为parent节点,增加earch和upport作为child节点
if i < len(n.path) {
child := node{
path: n.path[i:], // 不匹配的部分作为child节点
wildChild: n.wildChild,
indices: n.indices,
children: n.children,
handlers: n.handlers,
priority: n.priority - 1, // 降级成子节点,priority减1
}
// Update maxParams (max of all children)
for i := range child.children {
if child.children[i].maxParams > child.maxParams {
child.maxParams = child.children[i].maxParams
}
}
// 当前节点的子节点变成刚刚分裂的出来的节点
n.children = []*node{&child}
// []byte for proper unicode char conversion, see #65
n.indices = string([]byte{n.path[i]})
n.path = path[:i]
n.handlers = nil
n.wildChild = false
}
// Make new node a child of this node
// 将新来的节点插入新的parent节点作为子节点
if i < len(path) {
path = path[i:]
// 如果是参数节点(包含:或*)
if n.wildChild {
n = n.children[0]
n.priority++
// Update maxParams of the child node
if numParams > n.maxParams {
n.maxParams = numParams
}
numParams--
// Check if the wildcard matches
// 例如:/blog/:pp 和 /blog/:ppp,需要检查更长的通配符
if len(path) >= len(n.path) && n.path == path[:len(n.path)] {
// check for longer wildcard, e.g. :name and :names
if len(n.path) >= len(path) || path[len(n.path)] == '/' {
continue walk
}
}
panic("path segment '" + path +
"' conflicts with existing wildcard '" + n.path +
"' in path '" + fullPath + "'")
}
// 首字母,用来与indices做比较
c := path[0]
// slash after param
if n.nType == param && c == '/' && len(n.children) == 1 {
n = n.children[0]
n.priority++
continue walk
}
// Check if a child with the next path byte exists
// 判断子节点中是否有和当前path有匹配的,只需要查看子节点path的第一个字母即可,即indices
// 比如s的子节点现在是earch和upport,indices为eu
// 如果新来的路由为super,那么就是和upport有匹配的部分u,将继续分类现在的upport节点
for i := 0; i < len(n.indices); i++ {
if c == n.indices[i] {
i = n.incrementChildPrio(i)
n = n.children[i]
continue walk
}
}
// Otherwise insert it
if c != ':' && c != '*' {
// []byte for proper unicode char conversion, see #65
// 记录第一个字符,放在indices中
n.indices += string([]byte{c})
child := &node{
maxParams: numParams,
}
// 增加子节点
n.children = append(n.children, child)
n.incrementChildPrio(len(n.indices) - 1)
n = child
}
n.insertChild(numParams, path, fullPath, handlers)
return
} else if i == len(path) { // Make node a (in-path) leaf
// 路径相同,如果已有handler就报错,没有就赋值
if n.handlers != nil {
panic("handlers are already registered for path ''" + fullPath + "'")
}
n.handlers = handlers
}
return
}
} else { // Empty tree,空树,插入节点,节点种类是root
n.insertChild(numParams, path, fullPath, handlers)
n.nType = root
}
}
```
  此函数的主要目的是找到插入节点的位置,如果和现有节点存在相同的前缀,那么要将现有节点进行分裂,然后再插入,下面是`insertChild`函数
## 插入子节点
```
// @1: 参数个数
// @2: 路径
// @3: 完整路径
// @4: 处理函数
func (n *node) insertChild(numParams uint8, path string, fullPath string, handlers HandlersChain) {
var offset int // already handled bytes of the path
// find prefix until first wildcard (beginning with ':'' or '*'')
// 找到前缀,只要匹配到wildcard
for i, max := 0, len(path); numParams > 0; i++ {
c := path[i]
if c != ':' && c != '*' {
continue
}
// find wildcard end (either '/' or path end)
end := i + 1
for end < max && path[end] != '/' {
switch path[end] {
// the wildcard name must not contain ':' and '*'
case ':', '*':
panic("only one wildcard per path segment is allowed, has: '" +
path[i:] + "' in path '" + fullPath + "'")
default:
end++
}
}
// check if this Node existing children which would be
// unreachable if we insert the wildcard here
if len(n.children) > 0 {
panic("wildcard route '" + path[i:end] +
"' conflicts with existing children in path '" + fullPath + "'")
}
// check if the wildcard has a name
if end-i < 2 {
panic("wildcards must be named with a non-empty name in path '" + fullPath + "'")
}
if c == ':' { // param
// split path at the beginning of the wildcard
if i > 0 {
n.path = path[offset:i]
offset = i
}
child := &node{
nType: param,
maxParams: numParams,
}
n.children = []*node{child}
n.wildChild = true
n = child
n.priority++
numParams--
// if the path doesn't end with the wildcard, then there
// will be another non-wildcard subpath starting with '/'
if end < max {
n.path = path[offset:end]
offset = end
child := &node{
maxParams: numParams,
priority: 1,
}
n.children = []*node{child}
// 下次循环这个新的child节点
n = child
}
} else { // catchAll
if end != max || numParams > 1 {
panic("catch-all routes are only allowed at the end of the path in path '" + fullPath + "'")
}
if len(n.path) > 0 && n.path[len(n.path)-1] == '/' {
panic("catch-all conflicts with existing handle for the path segment root in path '" + fullPath + "'")
}
// currently fixed width 1 for '/'
i--
if path[i] != '/' {
panic("no / before catch-all in path '" + fullPath + "'")
}
n.path = path[offset:i]
// first node: catchAll node with empty path
child := &node{
wildChild: true,
nType: catchAll,
maxParams: 1,
}
n.children = []*node{child}
n.indices = string(path[i])
n = child
n.priority++
// second node: node holding the variable
child = &node{
path: path[i:],
nType: catchAll,
maxParams: 1,
handlers: handlers,
priority: 1,
}
n.children = []*node{child}
return
}
}
// insert remaining path part and handle to the leaf
n.path = path[offset:]
n.handlers = handlers
}
```
  `insertChild`函数是根据`path`本身进行分割, 将/分开的部分分别作为节点保存, 形成一棵树结构. 注意参数匹配中的`:`和`*`的区别, 前者是匹配一个字段, 后者是匹配后面所有的路径
## 路径查找
  匹配每个children的path,最长匹配
```
// Returns the handle registered with the given path (key). The values of
// wildcards are saved to a map.
// If no handle can be found, a TSR (trailing slash redirect) recommendation is
// made if a handle exists with an extra (without the) trailing slash for the
// given path.
func (n *node) getValue(path string, po Params, unescape bool) (handlers HandlersChain, p Params, tsr bool) {
p = po
walk: // Outer loop for walking the tree
for {
// 尚未到达path的终点
if len(path) > len(n.path) {
// 前面一段需要一致
if path[:len(n.path)] == n.path {
path = path[len(n.path):]
// If this node does not have a wildcard (param or catchAll)
// child, we can just look up the next child node and continue
// to walk down the tree
if !n.wildChild {
c := path[0]
for i := 0; i < len(n.indices); i++ {
if c == n.indices[i] {
n = n.children[i]
continue walk
}
}
// Nothing found.
// We can recommend to redirect to the same URL without a
// trailing slash if a leaf exists for that path.
tsr = (path == "/" && n.handlers != nil)
return
}
// handle wildcard child
n = n.children[0]
switch n.nType {
case param:
// find param end (either '/' or path end)
end := 0
for end < len(path) && path[end] != '/' {
end++
}
// save param value
if cap(p) < int(n.maxParams) {
p = make(Params, 0, n.maxParams)
}
i := len(p)
p = p[:i+1] // expand slice within preallocated capacity
p[i].Key = n.path[1:]
val := path[:end]
if unescape {
var err error
if p[i].Value, err = url.QueryUnescape(val); err != nil {
p[i].Value = val // fallback, in case of error
}
} else {
p[i].Value = val
}
// we need to go deeper!
if end < len(path) {
if len(n.children) > 0 {
path = path[end:]
n = n.children[0]
continue walk
}
// ... but we can't
tsr = (len(path) == end+1)
return
}
if handlers = n.handlers; handlers != nil {
return
}
if len(n.children) == 1 {
// No handle found. Check if a handle for this path + a
// trailing slash exists for TSR recommendation
n = n.children[0]
tsr = (n.path == "/" && n.handlers != nil)
}
return
case catchAll:
// save param value
if cap(p) < int(n.maxParams) {
p = make(Params, 0, n.maxParams)
}
i := len(p)
p = p[:i+1] // expand slice within preallocated capacity
p[i].Key = n.path[2:]
if unescape {
var err error
if p[i].Value, err = url.QueryUnescape(path); err != nil {
p[i].Value = path // fallback, in case of error
}
} else {
p[i].Value = path
}
handlers = n.handlers
return
default:
panic("invalid node type")
}
}
} else if path == n.path {
// We should have reached the node containing the handle.
// Check if this node has a handle registered.
if handlers = n.handlers; handlers != nil {
return
}
if path == "/" && n.wildChild && n.nType != root {
tsr = true
return
}
// No handle found. Check if a handle for this path + a
// trailing slash exists for trailing slash recommendation
for i := 0; i < len(n.indices); i++ {
if n.indices[i] == '/' {
n = n.children[i]
tsr = (len(n.path) == 1 && n.handlers != nil) ||
(n.nType == catchAll && n.children[0].handlers != nil)
return
}
}
return
}
// Nothing found. We can recommend to redirect to the same URL with an
// extra trailing slash if a leaf exists for that path
tsr = (path == "/") ||
(len(n.path) == len(path)+1 && n.path[len(path)] == '/' &&
path == n.path[:len(n.path)-1] && n.handlers != nil)
return
}
}
```
之前总听大家说数据结构与算法有什么用,工作中又用不到,上面就是一个很好的示例。我们平时还是要多关注底层原理,做后端的同学多看看框架的代码,一定受益匪浅~
本文转载自:https://michaelyou.github.io/2018/02/10/%E8%B7%AF%E7%94%B1%E6%9F%A5%E6%89%BE%E4%B9%8BRadix-Tree/
作者:Youmai
**感谢阅读,欢迎大家留言,分享,指正~**
![qrcode.png](https://static.studygolang.com/190508/d20b3d9f2790729effb6cbea985e443d.png)
有疑问加站长微信联系(非本文作者)