早在2013年11月份,在raft论文还只能在网上下载到草稿版时,我曾经写过一篇blog对其进行简要分析。4年过去了,各种raft协议的讲解铺天盖地,raft也确实得到了广泛的应用。其中最知名的应用莫过于etcd。etcd将raft协议本身实现为一个library,位于https://github.com/coreos/etcd/tree/master/raft,然后本身作为一个应用使用它。
本文不讲解raft协议核心内容,而是站在一个etcd raft library使用者的角度,讲解要用上这个library需要了解的东西。
这个library使用起来相对来说还是有点麻烦。官方有一个使用示例在 https://github.com/coreos/etcd/tree/master/contrib/raftexample。整体来说,这个库实现了raft协议核心的内容,比如append log的逻辑,选主逻辑,snapshot,成员变更等逻辑。需要明确的是:library没有实现消息的网络传输和接收,库只会把一些待发送的消息保存在内存中,用户自定义的网络传输层取出消息并发送出去,并且在网络接收端,需要调一个library的函数,用于将收到的消息传入library,后面会详细说明。同时,library定义了一个Storage接口,需要library的使用者自行实现。
Storage接口如下:
// Storage is an interface that may be implemented by the application
// to retrieve log entries from storage.
//
// If any Storage method returns an error, the raft instance will
// become inoperable and refuse to participate in elections; the
// application is responsible for cleanup and recovery in this case.
type Storage interface {
// InitialState returns the saved HardState and ConfState information.
InitialState() (pb.HardState, pb.ConfState, error)
// Entries returns a slice of log entries in the range [lo,hi).
// MaxSize limits the total size of the log entries returned, but
// Entries returns at least one entry if any.
Entries(lo, hi, maxSize uint64) ([]pb.Entry, error)
// Term returns the term of entry i, which must be in the range
// [FirstIndex()-1, LastIndex()]. The term of the entry before
// FirstIndex is retained for matching purposes even though the
// rest of that entry may not be available.
Term(i uint64) (uint64, error)
// LastIndex returns the index of the last entry in the log.
LastIndex() (uint64, error)
// FirstIndex returns the index of the first log entry that is
// possibly available via Entries (older entries have been incorporated
// into the latest Snapshot; if storage only contains the dummy entry the
// first log entry is not available).
FirstIndex() (uint64, error)
// Snapshot returns the most recent snapshot.
// If snapshot is temporarily unavailable, it should return ErrSnapshotTemporarilyUnavailable,
// so raft state machine could know that Storage needs some time to prepare
// snapshot and call Snapshot later.
Snapshot() (pb.Snapshot, error)
}
这些接口在library中会被用到。熟悉raft协议的人不难理解。上面提到的官方示例https://github.com/coreos/etcd/tree/master/contrib/raftexample中使用了library自带的MemoryStorage,和etcd的wal和snap包做持久化,重启的时候从wal和snap中获取日志恢复MemoryStorage。
要提供这种IO/网络密集型的东西,提高吞吐最好的手段就是batch加批处理了。etcd raft library正是这么做的。
下面看一下为了做这事,etcd提供的核心抽象Ready结构体:
// Ready encapsulates the entries and messages that are ready to read,
// be saved to stable storage, committed or sent to other peers.
// All fields in Ready are read-only.
type Ready struct {
// The current volatile state of a Node.
// SoftState will be nil if there is no update.
// It is not required to consume or store SoftState.
*SoftState
// The current state of a Node to be saved to stable storage BEFORE
// Messages are sent.
// HardState will be equal to empty state if there is no update.
pb.HardState
// ReadStates can be used for node to serve linearizable read requests locally
// when its applied index is greater than the index in ReadState.
// Note that the readState will be returned when raft receives msgReadIndex.
// The returned is only valid for the request that requested to read.
ReadStates []ReadState
// Entries specifies entries to be saved to stable storage BEFORE
// Messages are sent.
Entries []pb.Entry
// Snapshot specifies the snapshot to be saved to stable storage.
Snapshot pb.Snapshot
// CommittedEntries specifies entries to be committed to a
// store/state-machine. These have previously been committed to stable
// store.
CommittedEntries []pb.Entry
// Messages specifies outbound messages to be sent AFTER Entries are
// committed to stable storage.
// If it contains a MsgSnap message, the application MUST report back to raft
// when the snapshot has been received or has failed by calling ReportSnapshot.
Messages []pb.Message
// MustSync indicates whether the HardState and Entries must be synchronously
// written to disk or if an asynchronous write is permissible.
MustSync bool
}
可以说,这个Ready结构体封装了一批更新,这些更新包括:
- pb.HardState: 包含当前节点见过的最大的term,以及在这个term给谁投过票,已经当前节点知道的commit index
- Messages: 需要广播给所有peers的消息
- CommittedEntries:已经commit了,还没有apply到状态机的日志
- Snapshot:需要持久化的快照
库的使用者从node结构体提供的一个ready channel中不断的pop出一个个的Ready进行处理,库使用者通过如下方法拿到Ready channel:
func (n *node) Ready() <-chan Ready { return n.readyc }
应用需要对Ready的处理包括:
- 将HardState, Entries, Snapshot持久化到storage。
- 将Messages(上文提到的msgs)非阻塞的广播给其他peers
- 将CommittedEntries(已经commit还没有apply)应用到状态机。
- 如果发现CommittedEntries中有成员变更类型的entry,调用node的ApplyConfChange()方法让node知道(这里和raft论文不一样,论文中只要节点收到了成员变更日志就应用)
- 调用Node.Advance()告诉raft node,这批状态更新处理完了,状态已经演进了,可以给我下一批Ready让我处理。
应用通过raft.StartNode()来启动raft中的一个副本,函数内部通过启动一个goroutine运行
func (n *node) run(r *raft)
来启动服务。
应用通过调用
func (n *node) Propose(ctx context.Context, data []byte) error
来Propose一个请求给raft,被raft开始处理后返回。
增删节点通过调用
func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error
node结构体包含几个重要的channel:
// node is the canonical implementation of the Node interface
type node struct {
propc chan pb.Message
recvc chan pb.Message
confc chan pb.ConfChange
confstatec chan pb.ConfState
readyc chan Ready
advancec chan struct{}
tickc chan struct{}
done chan struct{}
stop chan struct{}
status chan chan Status
logger Logger
}
- propc: propc是一个没有buffer的channel,应用通过Propose接口写入的请求被封装成Message被push到propc中,node的run方法从propc中pop出Message,append自己的raft log中,并且将Message放入mailbox中(raft结构体中的msgs []pb.Message),这个msgs会被封装在Ready中,被应用从readyc中取出来,然后通过应用自定义的transport发送出去。
- recvc: 应用自定义的transport在收到Message后需要调用
func (n *node) Step(ctx context.Context, m pb.Message) error
来把Message放入recvc中,经过一些处理后,同样,会把需要发送的Message放入到对应peers的mailbox中。后续通过自定义transport发送出去。
- readyc/advancec: readyc和advancec都是没有buffer的channel,node.run()内部把相关的一些状态更新打包成Ready结构体(其中一种状态就是上面提到的msgs)放入readyc中。应用从readyc中pop出Ready中,对相应的状态进行处理,处理完成后,调用
rc.node.Advance()
往advancec中push一个空结构体告诉raft,已经对这批Ready包含的状态进行了相应的处理,node.run()内部从advancec中得到通知后,对内部一些状态进行处理,比如把已经持久化到storage中的entries从内存(对应type unstable struct)中删除等。
- tickc:应用定期往tickc中push空结构体,node.run()会调用tick()函数,对于leader来说,tick()会给其他peers发心跳,对于follower来说,会检查是否需要发起选主操作。
- confc/confstatec:应用从Ready中拿出CommittedEntries,检查其如果含有成员变更类型的日志,则需要调用
func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState
这个函数会push ConfChange到confc中,confc同样是个无buffer的channel,node.run()内部会从confc中拿出ConfChange,然后进行真正的增减peers操作,之后将最新的成员组push到confstatec中,而ApplyConfChange函数从confstatec pop出最新的成员组返回给应用。
可以说,要想用上etcd的raft library还是需要了解不少东西的。
有疑问加站长微信联系(非本文作者)