欢迎来到 [Golang 系列教程](https://studygolang.com/subject/2)的第 22 篇。
在[上一教程](https://studygolang.com/articles/12342)里,我们探讨了如何使用 Go 协程(Goroutine)来实现并发。我们接着在本教程里学习信道(Channel),学习如何通过信道来实现 Go 协程间的通信。
## 什么是信道?
信道可以想像成 Go 协程之间通信的管道。如同管道中的水会从一端流到另一端,通过使用信道,数据也可以从一端发送,在另一端接收。
## 信道的声明
所有信道都关联了一个类型。信道只能运输这种类型的数据,而运输其他类型的数据都是非法的。
`chan T` 表示 `T` 类型的信道。
信道的零值为 `nil`。信道的零值没有什么用,应该像对 map 和切片所做的那样,用 `make` 来定义信道。
下面编写代码,声明一个信道。
```go
package main
import "fmt"
func main() {
var a chan int
if a == nil {
fmt.Println("channel a is nil, going to define it")
a = make(chan int)
fmt.Printf("Type of a is %T", a)
}
}
```
[在线运行程序](https://play.golang.org/p/QDtf6mvymD)
由于信道的零值为 `nil`,在第 6 行,信道 `a` 的值就是 `nil`。于是,程序执行了 if 语句内的语句,定义了信道 `a`。程序中 `a` 是一个 int 类型的信道。该程序会输出:
```
channel a is nil, going to define it
Type of a is chan int
```
简短声明通常也是一种定义信道的简洁有效的方法。
```go
a := make(chan int)
```
这一行代码同样定义了一个 int 类型的信道 `a`。
## 通过信道进行发送和接收
如下所示,该语法通过信道发送和接收数据。
```go
data := <- a // 读取信道 a
a <- data // 写入信道 a
```
信道旁的箭头方向指定了是发送数据还是接收数据。
在第一行,箭头对于 `a` 来说是向外指的,因此我们读取了信道 `a` 的值,并把该值存储到变量 `data`。
在第二行,箭头指向了 `a`,因此我们在把数据写入信道 `a`。
## 发送与接收默认是阻塞的
发送与接收默认是阻塞的。这是什么意思?当把数据发送到信道时,程序控制会在发送数据的语句处发生阻塞,直到有其它 Go 协程从信道读取到数据,才会解除阻塞。与此类似,当读取信道的数据时,如果没有其它的协程把数据写入到这个信道,那么读取过程就会一直阻塞着。
信道的这种特性能够帮助 Go 协程之间进行高效的通信,不需要用到其他编程语言常见的显式锁或条件变量。
## 信道的代码示例
理论已经够了:)。接下来写点代码,看看协程之间通过信道是怎么通信的吧。
我们其实可以重写上章学习 [Go 协程](https://studygolang.com/articles/12342) 时写的程序,现在我们在这里用上信道。
首先引用前面教程里的程序。
```go
package main
import (
"fmt"
"time"
)
func hello() {
fmt.Println("Hello world goroutine")
}
func main() {
go hello()
time.Sleep(1 * time.Second)
fmt.Println("main function")
}
```
[在线运行程序](https://play.golang.org/p/U9ZZuSql8-)
这是上一篇的代码。我们使用到了休眠,使 Go 主协程等待 hello 协程结束。如果你看不懂,建议你阅读上一教程 [Go 协程](https://studygolang.com/articles/12342)。
我们接下来使用信道来重写上面代码。
```go
package main
import (
"fmt"
)
func hello(done chan bool) {
fmt.Println("Hello world goroutine")
done <- true
}
func main() {
done := make(chan bool)
go hello(done)
<-done
fmt.Println("main function")
}
```
[在线运行程序](https://play.golang.org/p/I8goKv6ZMF)
在上述程序里,我们在第 12 行创建了一个 bool 类型的信道 `done`,并把 `done` 作为参数传递给了 `hello` 协程。在第 14 行,我们通过信道 `done` 接收数据。这一行代码发生了阻塞,除非有协程向 `done` 写入数据,否则程序不会跳到下一行代码。于是,这就不需要用以前的 `time.Sleep` 来阻止 Go 主协程退出了。
`<-done` 这行代码通过协程(译注:原文笔误,信道)`done` 接收数据,但并没有使用数据或者把数据存储到变量中。这完全是合法的。
现在我们的 Go 主协程发生了阻塞,等待信道 `done` 发送的数据。该信道作为参数传递给了协程 `hello`,`hello` 打印出 `Hello world goroutine`,接下来向 `done` 写入数据。当完成写入时,Go 主协程会通过信道 `done` 接收数据,于是它解除阻塞状态,打印出文本 `main function`。
该程序输出如下:
```
Hello world goroutine
main function
```
我们稍微修改一下程序,在 `hello` 协程里加入休眠函数,以便更好地理解阻塞的概念。
```go
package main
import (
"fmt"
"time"
)
func hello(done chan bool) {
fmt.Println("hello go routine is going to sleep")
time.Sleep(4 * time.Second)
fmt.Println("hello go routine awake and going to write to done")
done <- true
}
func main() {
done := make(chan bool)
fmt.Println("Main going to call hello go goroutine")
go hello(done)
<-done
fmt.Println("Main received data")
}
```
[在线运行程序](https://play.golang.org/p/EejiO-yjUQ)
在上面程序里,我们向 `hello` 函数里添加了 4 秒的休眠(第 10 行)。
程序首先会打印 `Main going to call hello go goroutine`。接着会开启 `hello` 协程,打印 `hello go routine is going to sleep`。打印完之后,`hello` 协程会休眠 4 秒钟,而在这期间,主协程会在 `<-done` 这一行发生阻塞,等待来自信道 `done` 的数据。4 秒钟之后,打印 `hello go routine awake and going to write to done`,接着再打印 `Main received data`。
## 信道的另一个示例
我们再编写一个程序来更好地理解信道。该程序会计算一个数中每一位的平方和与立方和,然后把平方和与立方和相加并打印出来。
例如,如果输出是 123,该程序会如下计算输出:
```
squares = (1 * 1) + (2 * 2) + (3 * 3)
cubes = (1 * 1 * 1) + (2 * 2 * 2) + (3 * 3 * 3)
output = squares + cubes = 50
```
我们会这样去构建程序:在一个单独的 Go 协程计算平方和,而在另一个协程计算立方和,最后在 Go 主协程把平方和与立方和相加。
```go
package main
import (
"fmt"
)
func calcSquares(number int, squareop chan int) {
sum := 0
for number != 0 {
digit := number % 10
sum += digit * digit
number /= 10
}
squareop <- sum
}
func calcCubes(number int, cubeop chan int) {
sum := 0
for number != 0 {
digit := number % 10
sum += digit * digit * digit
number /= 10
}
cubeop <- sum
}
func main() {
number := 589
sqrch := make(chan int)
cubech := make(chan int)
go calcSquares(number, sqrch)
go calcCubes(number, cubech)
squares, cubes := <-sqrch, <-cubech
fmt.Println("Final output", squares + cubes)
}
```
[在线运行程序](https://play.golang.org/p/4RKr7_YO_B)
在第 7 行,函数 `calcSquares` 计算一个数每位的平方和,并把结果发送给信道 `squareop`。与此类似,在第 17 行函数 `calcCubes` 计算一个数每位的立方和,并把结果发送给信道 `cubop`。
这两个函数分别在单独的协程里运行(第 31 行和第 32 行),每个函数都有传递信道的参数,以便写入数据。Go 主协程会在第 33 行等待两个信道传来的数据。一旦从两个信道接收完数据,数据就会存储在变量 `squares` 和 `cubes` 里,然后计算并打印出最后结果。该程序会输出:
```
Final output 1536
```
## 死锁
使用信道需要考虑的一个重点是死锁。当 Go 协程给一个信道发送数据时,照理说会有其他 Go 协程来接收数据。如果没有的话,程序就会在运行时触发 panic,形成死锁。
同理,当有 Go 协程等着从一个信道接收数据时,我们期望其他的 Go 协程会向该信道写入数据,要不然程序就会触发 panic。
```go
package main
func main() {
ch := make(chan int)
ch <- 5
}
```
[在线运行程序](https://play.golang.org/p/q1O5sNx4aW)
在上述程序中,我们创建了一个信道 `ch`,接着在下一行 `ch <- 5`,我们把 `5` 发送到这个信道。对于本程序,没有其他的协程从 `ch` 接收数据。于是程序触发 panic,出现如下运行时错误。
```
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [chan send]:
main.main()
/tmp/sandbox249677995/main.go:6 +0x80
```
## 单向信道
我们目前讨论的信道都是双向信道,即通过信道既能发送数据,又能接收数据。其实也可以创建单向信道,这种信道只能发送或者接收数据。
```go
package main
import "fmt"
func sendData(sendch chan<- int) {
sendch <- 10
}
func main() {
sendch := make(chan<- int)
go sendData(sendch)
fmt.Println(<-sendch)
}
```
[在线运行程序](https://play.golang.org/p/PRKHxM-iRK)
上面程序的第 10 行,我们创建了唯送(Send Only)信道 `sendch`。`chan<- int` 定义了唯送信道,因为箭头指向了 `chan`。在第 12 行,我们试图通过唯送信道接收数据,于是编译器报错:
```
main.go:11: invalid operation: <-sendch (receive from send-only type chan<- int)
```
**一切都很顺利,只不过一个不能读取数据的唯送信道究竟有什么意义呢?**
**这就需要用到信道转换(Channel Conversion)了。把一个双向信道转换成唯送信道或者唯收(Receive Only)信道都是行得通的,但是反过来就不行。**
```go
package main
import "fmt"
func sendData(sendch chan<- int) {
sendch <- 10
}
func main() {
cha1 := make(chan int)
go sendData(cha1)
fmt.Println(<-cha1)
}
```
[在线运行程序](https://play.golang.org/p/aqi_rJ1U8j)
在上述程序的第 10 行,我们创建了一个双向信道 `cha1`。在第 11 行 `cha1` 作为参数传递给了 `sendData` 协程。在第 5 行,函数 `sendData` 里的参数 `sendch chan<- int` 把 `cha1` 转换为一个唯送信道。于是该信道在 `sendData` 协程里是一个唯送信道,而在 Go 主协程里是一个双向信道。该程序最终打印输出 `10`。
## 关闭信道和使用 for range 遍历信道
数据发送方可以关闭信道,通知接收方这个信道不再有数据发送过来。
当从信道接收数据时,接收方可以多用一个变量来检查信道是否已经关闭。
```
v, ok := <- ch
```
上面的语句里,如果成功接收信道所发送的数据,那么 `ok` 等于 true。而如果 `ok` 等于 false,说明我们试图读取一个关闭的通道。从关闭的信道读取到的值会是该信道类型的零值。例如,当信道是一个 `int` 类型的信道时,那么从关闭的信道读取的值将会是 `0`。
```go
package main
import (
"fmt"
)
func producer(chnl chan int) {
for i := 0; i < 10; i++ {
chnl <- i
}
close(chnl)
}
func main() {
ch := make(chan int)
go producer(ch)
for {
v, ok := <-ch
if ok == false {
break
}
fmt.Println("Received ", v, ok)
}
}
```
[在线运行程序](https://play.golang.org/p/XWmUKDA2Ri)
在上述的程序中,`producer` 协程会从 0 到 9 写入信道 `chn1`,然后关闭该信道。主函数有一个无限的 for 循环(第 16 行),使用变量 `ok`(第 18 行)检查信道是否已经关闭。如果 `ok` 等于 false,说明信道已经关闭,于是退出 for 循环。如果 `ok` 等于 true,会打印出接收到的值和 `ok` 的值。
```
Received 0 true
Received 1 true
Received 2 true
Received 3 true
Received 4 true
Received 5 true
Received 6 true
Received 7 true
Received 8 true
Received 9 true
```
for range 循环用于在一个信道关闭之前,从信道接收数据。
接下来我们使用 for range 循环重写上面的代码。
```go
package main
import (
"fmt"
)
func producer(chnl chan int) {
for i := 0; i < 10; i++ {
chnl <- i
}
close(chnl)
}
func main() {
ch := make(chan int)
go producer(ch)
for v := range ch {
fmt.Println("Received ",v)
}
}
```
[在线运行程序](https://play.golang.org/p/JJ3Ida1r_6)
在第 16 行,for range 循环从信道 `ch` 接收数据,直到该信道关闭。一旦关闭了 `ch`,循环会自动结束。该程序会输出:
```
Received 0
Received 1
Received 2
Received 3
Received 4
Received 5
Received 6
Received 7
Received 8
Received 9
```
我们可以使用 for range 循环,重写[信道的另一个示例](#)这一节里面的代码,提高代码的可重用性。
如果你仔细观察这段代码,会发现获得一个数里的每位数的代码在 `calcSquares` 和 `calcCubes` 两个函数内重复了。我们将把这段代码抽离出来,放在一个单独的函数里,然后并发地调用它。
```go
package main
import (
"fmt"
)
func digits(number int, dchnl chan int) {
for number != 0 {
digit := number % 10
dchnl <- digit
number /= 10
}
close(dchnl)
}
func calcSquares(number int, squareop chan int) {
sum := 0
dch := make(chan int)
go digits(number, dch)
for digit := range dch {
sum += digit * digit
}
squareop <- sum
}
func calcCubes(number int, cubeop chan int) {
sum := 0
dch := make(chan int)
go digits(number, dch)
for digit := range dch {
sum += digit * digit * digit
}
cubeop <- sum
}
func main() {
number := 589
sqrch := make(chan int)
cubech := make(chan int)
go calcSquares(number, sqrch)
go calcCubes(number, cubech)
squares, cubes := <-sqrch, <-cubech
fmt.Println("Final output", squares+cubes)
}
```
[在线运行程序](https://play.golang.org/p/oL86W9Ui03)
上述程序里的 `digits` 函数,包含了获取一个数的每位数的逻辑,并且 `calcSquares` 和 `calcCubes` 两个函数并发地调用了 `digits`。当计算完数字里面的每一位数时,第 13 行就会关闭信道。`calcSquares` 和 `calcCubes` 两个协程使用 for range 循环分别监听了它们的信道,直到该信道关闭。程序的其他地方不变,该程序同样会输出:
```
Final output 1536
```
本教程的内容到此结束。关于信道还有一些其他的概念,比如缓冲信道(Buffered Channel)、工作池(Worker Pool)和 select。我们会在接下来的教程里专门介绍它们。感谢阅读。祝你愉快。
**上一教程 - [Go 协程](https://studygolang.com/articles/12342)**
**下一教程 - [缓冲信道和工作池](https://studygolang.com/articles/12512)**
via: https://golangbot.com/channels/
作者:Nick Coghlan 译者:Noluye 校对:polaris1119
本文由 GCTT 原创翻译,Go语言中文网 首发。也想加入译者行列,为开源做一些自己的贡献么?欢迎加入 GCTT!
翻译工作和译文发表仅用于学习和交流目的,翻译工作遵照 CC-BY-NC-SA 协议规定,如果我们的工作有侵犯到您的权益,请及时联系我们。
欢迎遵照 CC-BY-NC-SA 协议规定 转载,敬请在正文中标注并保留原文/译文链接和作者/译者等信息。
文章仅代表作者的知识和看法,如有不同观点,请楼下排队吐槽
有疑问加站长微信联系(非本文作者))