sync.Mutex
Go中使用sync.Mutex类型实现mutex(排他锁、互斥锁)。在源代码的sync/mutex.go文件中,有如下定义:
// A Mutex is a mutual exclusion lock.
// The zero value for a Mutex is an unlocked mutex.
//
// A Mutex must not be copied after first use.
type Mutex struct {
state int32
sema uint32
}
这没有任何非凡的地方。和mutex相关的所有事情都是通过sync.Mutex类型的两个方法sync.Lock()和sync.Unlock()函数来完成的,前者用于获取sync.Mutex锁,后者用于释放sync.Mutex锁。sync.Mutex一旦被锁住,其它的Lock()操作就无法再获取它的锁,只有通过Unlock()释放锁之后才能通过Lock()继续获取锁。
也就是说,已有的锁会导致其它申请Lock()操作的goroutine被阻塞,且只有在Unlock()的时候才会解除阻塞。
另外需要注意,sync.Mutex不区分读写锁,只有Lock()与Lock()之间才会导致阻塞的情况,如果在一个地方Lock(),在另一个地方不Lock()而是直接修改或访问共享数据,这对于sync.Mutex类型来说是允许的,因为mutex不会和goroutine进行关联。如果想要区分读、写锁,可以使用sync.RWMutex类型,见后文。
在Lock()和Unlock()之间的代码段称为资源的临界区(critical section),在这一区间内的代码是严格被Lock()保护的,是线程安全的,任何一个时间点都只能有一个goroutine执行这段区间的代码。
以下是使用sync.Mutex的一个示例,稍后是非常详细的分析过程。
package main
import (
"fmt"
"sync"
"time"
)
// 共享变量
var (
m sync.Mutex
v1 int
)
// 修改共享变量
// 在Lock()和Unlock()之间的代码部分是临界区
func change(i int) {
m.Lock()
time.Sleep(time.Second)
v1 = v1 + 1
if v1%10 == 0 {
v1 = v1 - 10*i
}
m.Unlock()
}
// 访问共享变量
// 在Lock()和Unlock()之间的代码部分是是临界区
func read() int {
m.Lock()
a := v1
m.Unlock()
return a
}
func main() {
var numGR = 21
var wg sync.WaitGroup
fmt.Printf("%d", read())
// 循环创建numGR个goroutine
// 每个goroutine都执行change()、read()
// 每个change()和read()都会持有锁
for i := 0; i < numGR; i++ {
wg.Add(1)
go func(i int) {
defer wg.Done()
change(i)
fmt.Printf(" -> %d", read())
}(i)
}
wg.Wait()
}
第一次执行结果:
0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9 -> -100 -> -99
-> -98 -> -97 -> -96 -> -95 -> -94 -> -93 -> -92 -> -91 -> -260 -> -259
第二次执行结果:注意其中的-74和-72之间跨了一个数
0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9 -> -80 -> -79
-> -78 -> -77 -> -76 -> -75 -> -74 -> -72 -> -71 -> -230 -> -229 -> -229
上面的示例中,change()、read()都会申请锁,并在准备执行完函数时释放锁,它们如何修改数据、访问数据本文不多做解释。需要详细解释的是main()中的for循环部分。
在for循环中,会不断激活新的goroutine(共21个)执行匿名函数,在每个匿名函数中都会执行change()和read(),意味着每个goroutine都会申请两次锁、释放两次锁,且for循环中没有任何Sleep延迟,这21个goroutine几乎是一瞬间同时激活的。
但由于change()和read()中都申请锁,对于这21个goroutine将要分别执行的42个critical section,Lock()保证了在某一时间点只有其中一个goroutine能访问其中一个critical section。当释放了一个critical section,其它的Lock()将争夺互斥锁,也就是所谓的竞争现象(race condition)。因为竞争的存在,这42个critical section被访问的顺序是随机的,完全无法保证哪个critical section先被访问。
对于前9个被调度到的goroutine,无论是哪个goroutine取得这9个change(i)中的critical section,都只是对共享变量v1做加1运算,但当第10个goroutine被调度时,由于v1加1之后得到10,它满足if条件,会执行v1 = v1 - i*10
,但这个i可能是任意0到numGR之间的值(因为无法保证并发的goroutine的调度顺序),这使得v1的值从第10个goroutine开始出现随机性。但从第10到第19个goroutine被调度的过程中,也只是对共享变量v1做加1运算,这些值是可以根据第10个数推断出来的,到第20个goroutine,又再次随机。依此类推。
此外,每个goroutine中的read()也都会参与锁竞争,所以并不能保证每次change(i)之后会随之执行到read(),可能goroutine 1的change()执行完后,会跳转到goroutine 3的change()上,这样一来,goroutine 1的read()就无法读取到goroutine 1所修改的v1值,而是访问到其它goroutine中修改后的值。所以,前面的第二次执行结果中出现了一次数据跨越。只不过执行完change()后立即执行read()的几率比较大,所以多数时候输出的数据都是连续的。
总而言之,Mutex保证了每个critical section安全,某一时间点只有一个goroutine访问到这部分,但也因此而出现了随机性。
如果Lock()后忘记了Unlock(),将会永久阻塞而出现死锁。如果
适合sync.Mutex的数据类型
其实,对于内置类型的共享变量来说,使用sync.Mutex和Lock()、Unlock()来保护也是不合理的,因为它们自身不包含Mutex属性。真正合理的共享变量是那些包含Mutex属性的struct类型。例如:
type mytype struct {
m sync.Mutex
var int
}
x := new(mytype)
这时只要想保护var变量,就先x.m.Lock(),操作完var后,再x.m.Unlock()。这样就能保证x中的var字段变量一定是被保护的。
sync.RWMutex
Go中使用sync.RWMutex类型实现读写互斥锁rwmutex。在源代码的sync/rwmutex.go文件中,有如下定义:
// A RWMutex is a reader/writer mutual exclusion lock.
// The lock can be held by an arbitrary number of readers or a single writer.
// The zero value for a RWMutex is an unlocked mutex.
//
// A RWMutex must not be copied after first use.
//
// If a goroutine holds a RWMutex for reading and another goroutine might
// call Lock, no goroutine should expect to be able to acquire a read lock
// until the initial read lock is released. In particular, this prohibits
// recursive read locking. This is to ensure that the lock eventually becomes
// available; a blocked Lock call excludes new readers from acquiring the
// lock.
type RWMutex struct {
w Mutex // held if there are pending writers
writerSem uint32 // 写锁需要等待读锁释放的信号量
readerSem uint32 // 读锁需要等待写锁释放的信号量
readerCount int32 // 读锁后面挂起了多少个写锁申请
readerWait int32 // 已释放了多少个读锁
}
上面的注释和源代码说明了几点:
- RWMutex是基于Mutex的,在Mutex的基础之上增加了读、写的信号量,并使用了类似引用计数的读锁数量
- 读锁与读锁兼容,读锁与写锁互斥,写锁与写锁互斥,只有在锁释放后才可以继续申请互斥的锁:
- 可以同时申请多个读锁
- 有读锁时申请写锁将阻塞,有写锁时申请读锁将阻塞
- 只要有写锁,后续申请读锁和写锁都将阻塞
- 可以同时申请多个读锁
此类型有几个锁和解锁的方法:
func (rw *RWMutex) Lock()
func (rw *RWMutex) RLock()
func (rw *RWMutex) RLocker() Locker
func (rw *RWMutex) RUnlock()
func (rw *RWMutex) Unlock()
其中:
- Lock()和Unlock()用于申请和释放写锁
- RLock()和RUnlock()用于申请和释放读锁
- 一次RUnlock()操作只是对读锁数量减1,即减少一次读锁的引用计数
- 一次RUnlock()操作只是对读锁数量减1,即减少一次读锁的引用计数
- 如果不存在写锁,则Unlock()引发panic,如果不存在读锁,则RUnlock()引发panic
- RLocker()用于返回一个实现了Lock()和Unlock()方法的Locker接口
此外,无论是Mutex还是RWMutex都不会和goroutine进行关联,这意味着它们的锁申请行为可以在一个goroutine中操作,释放锁行为可以在另一个goroutine中操作。
由于RLock()和Lock()都能保证数据不被其它goroutine修改,所以在RLock()与RUnlock()之间的,以及Lock()与Unlock()之间的代码区都是critical section。
以下是一个示例,此示例中同时使用了Mutex和RWMutex,RWMutex用于读、写,Mutex只用于读。
package main
import (
"fmt"
"os"
"sync"
"time"
)
var Password = secret{password: "myPassword"}
type secret struct {
RWM sync.RWMutex
M sync.Mutex
password string
}
// 通过rwmutex写
func Change(c *secret, pass string) {
c.RWM.Lock()
fmt.Println("Change with rwmutex lock")
time.Sleep(3 * time.Second)
c.password = pass
c.RWM.Unlock()
}
// 通过rwmutex读
func rwMutexShow(c *secret) string {
c.RWM.RLock()
fmt.Println("show with rwmutex",time.Now().Second())
time.Sleep(1 * time.Second)
defer c.RWM.RUnlock()
return c.password
}
// 通过mutex读,和rwMutexShow的唯一区别在于锁的方式不同
func mutexShow(c *secret) string {
c.M.Lock()
fmt.Println("show with mutex:",time.Now().Second())
time.Sleep(1 * time.Second)
defer c.M.Unlock()
return c.password
}
func main() {
// 定义一个稍后用于覆盖(重写)的函数
var show = func(c *secret) string { return "" }
// 通过变量赋值的方式,选择并重写showFunc函数
if len(os.Args) != 2 {
fmt.Println("Using sync.RWMutex!",time.Now().Second())
show = rwMutexShow
} else {
fmt.Println("Using sync.Mutex!",time.Now().Second())
show = mutexShow
}
var wg sync.WaitGroup
// 激活5个goroutine,每个goroutine都查看
// 根据选择的函数不同,showFunc()加锁的方式不同
for i := 0; i < 5; i++ {
wg.Add(1)
go func() {
defer wg.Done()
fmt.Println("Go Pass:", show(&Password),time.Now().Second())
}()
}
// 激活一个申请写锁的goroutine
go func() {
wg.Add(1)
defer wg.Done()
Change(&Password, "123456")
}()
// 阻塞,直到所有wg.Done
wg.Wait()
}
Change()函数申请写锁,并睡眠3秒后修改数据,然后释放写锁。
rwMutexShow()函数申请读锁,并睡眠一秒后取得数据,并释放读锁。注意,rwMutexShow()中的print和return是相隔一秒钟的。
mutexShow()函数申请Mutex锁,和RWMutex互不相干。和rwMutexShow()唯一不同之处在于申请的锁不同。
main()中,先根据命令行参数数量决定运行哪一个show()。之所以能根据函数变量来赋值,是因为先定义了一个show()函数,它的函数签名和rwMutexShow()、mutexShow()的签名相同,所以可以相互赋值。
for循环中激活了5个goroutine并发运行,for瞬间激活5个goroutine后,继续执行main()代码会激活另一个用于申请写锁的goroutine。这6个goroutine的执行顺序是随机的。
如果show选中的函数是rwMutexShow(),则5个goroutine要申请的RLock()锁和写锁是冲突的,但5个RLock()是兼容的。所以,只要某个时间点调度到了写锁的goroutine,剩下的读锁goroutine都会从那时开始阻塞3秒。
除此之外,还有一个不严格准确,但在时间持续长短的理论上来说能保证的一个规律:当修改数据结束后,各个剩下的goroutine都申请读锁,因为申请后立即print输出,然后睡眠1秒,但1秒时间足够所有剩下的goroutine申请完读锁,使得show with rwmutex
输出是连在一起,输出的Go Pass: 123456
又是连在一起的。
某次结果如下:
Using sync.RWMutex! 58
show with rwmutex 58
Change with rwmutex lock
Go Pass: myPassword 59
show with rwmutex 2
show with rwmutex 2
show with rwmutex 2
show with rwmutex 2
Go Pass: 123456 3
Go Pass: 123456 3
Go Pass: 123456 3
Go Pass: 123456 3
如果show选中的函数是mutexShow(),则读数据和写数据互不冲突,但读和读是冲突的(因为Mutex的Lock()是互斥的)。
某次结果如下:
Using sync.Mutex! 30
Change with rwmutex lock
show with mutex: 30
Go Pass: myPassword 31
show with mutex: 31
Go Pass: myPassword 32
show with mutex: 32
Go Pass: 123456 33
show with mutex: 33
show with mutex: 34
Go Pass: 123456 34
Go Pass: 123456 35
用Mutex还是用RWMutex
Mutex和RWMutex都不关联goroutine,但RWMutex显然更适用于读多写少的场景。仅针对读的性能来说,RWMutex要高于Mutex,因为rwmutex的多个读可以并存。
有疑问加站长微信联系(非本文作者)