LeetCode 计算二进制数中1的个数
1 题目描述
给定一个非负整数num,对0 ≤ i ≤ num区间内每个整数,计算其对应的二进制数中1的个数,结果用数组返回。
例子1:
输入:2
输出:[0, 1, 1]
例子2:
输入:5
输出:[0,1,1,2,1,2]
题目出处:
https://leetcode.com/problems/counting-bits/
2 解决思路
2.1 常规算法
- func decimal2Binary(n int) string {
- b := ""
- for {
- // remain
- r := 0
- n, r = n>>1, n%2
- b = strconv.Itoa(r) + b
- if 0 == n {
- return b
- }
- }
- }
- func countOne(s string) int {
- c := 0
- for _, i := range []rune(s) {
- if '1' == i {
- c++
- }
- }
- return c
- }
- func countBits(num int) []int {
- s := make([]int, num+1)
- for i := 0; i <= num; i++ {
- s[i] = countOne(decimal2Binary(i))
- }
- return s
- }
2.2 改进思路
避免对递增数组中的每个数值作计算,将4位看做一个单元,单元内0-15的二进制数中1的个数是确定的。这样采用16进制去计算,给定数值,每除以16所得的余数就是落在该单元内的数值,直至被除数为0,将每个单元中1的个数累加既可。
3 golang实现代码
https://github.com/olzhy/leetcode/blob/master/338_Couting_Bits/test.go
- func countBinaryOneInHexUnit(n int) int {
- countOne := 0
- switch n {
- case 0:
- countOne = 0
- case 1, 2, 4, 8:
- countOne = 1
- case 3, 5, 6, 9, 10, 12:
- countOne = 2
- case 7, 11, 13, 14:
- countOne = 3
- case 15:
- countOne = 4
- }
- return countOne
- }
- func countBinaryOne(n int) int {
- // remain
- r := 0
- countOne := 0
- for n > 0 {
- n, r = n>>4, n%16
- countOne += countBinaryOneInHexUnit(r)
- }
- return countOne
- }
- func countBits(num int) []int {
- s := make([]int, num+1)
- for i := 0; i <= num; i++ {
- s[i] = countBinaryOne(i)
- }
- return s
- }
4 基准测试
4.1 测试代码
- package main
- import (
- "testing"
- )
- func BenchmarkCountBits(b *testing.B) {
- for i := 0; i < b.N; i++ {
- countBits(100000000)
- }
- }
- go test -test.bench=".*"
4.2 测试结果
- goos: darwin
- goarch: amd64
- pkg: github.com/olzhy/test
- BenchmarkCountBits-4 1 4618146566 ns/op
- PASS
- ok github.com/olzhy/test 4.670s
有疑问加站长微信联系(非本文作者)