面试经典算法:优先队列,最大堆,堆排序,左偏树Golang实现

aside section._1OhGeD · · 1320 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

堆排序

使用优先队列-最小/最大堆可实现。

优先队列

优先队列是一种能完成以下任务的队列:插入一个数值,取出最小的数值(获取数值,并且删除)。优先队列可以用二叉树来实现,我们称这种为二叉堆。

最小堆

最小堆是二叉堆的一种,是一颗完全二叉树(一种平衡树), 其特点是父节点的键值总是小于或者等于子节点。

实现细节(两个操作):

push:向堆中插入数据时,首先在堆的末尾插入数据,然后不断向上提升,直到没有大小颠倒时。
pop:从堆中删除最小值时首先把最后一个值复制到根节点上,并且删除最后一个数值。然后不断向下交换, 直到没有大小颠倒为止。在向下交换过程中,如果有两个子儿子都小于自己,就选择较小的

插入时间复杂度O(logN),删除时间复杂度O(logN),两个二叉堆合并时间复杂性O(NlogN).

最大堆同理。可用此结构实现堆排序算法。

/*
    最小堆
*/
package main

import "fmt"

type Heap struct {
    Size  int
    Elems []int
}

func NewHeap(MaxSize int) *Heap {
    h := new(Heap)
    h.Elems = make([]int, MaxSize, MaxSize)
    return h
}

func (h *Heap) Push(x int) {
    h.Size++

    // i是要插入节点的下标
    i := h.Size
    for {
        if i <= 0 {
            break
        }

        // parent为父亲节点的下标
        parent := (i - 1) / 2
        // 如果父亲节点小于等于插入的值,则说明大小没有跌倒,可以退出
        if h.Elems[parent] <= x {
            break
        }

        // 互换当前父亲节点与要插入的值
        h.Elems[i] = h.Elems[parent]
        i = parent
    }

    h.Elems[i] = x
}

func (h *Heap) Pop() int {
    if h.Size == 0 {
        return 0
    }

    // 取出根节点
    ret := h.Elems[0]

    // 将最后一个节点的值提到根节点上
    h.Size--
    x := h.Elems[h.Size]

    i := 0
    for {
        // a,b为左右两个子节点的下标
        a := 2*i + 1
        b := 2*i + 2

        // 没有左子树
        if a >= h.Size {
            break
        }

        // 有右子树,找两个子节点中较小的值
        if b < h.Size && h.Elems[b] < h.Elems[a] {
            a = b
        }

        // 父亲小直接退出
        if h.Elems[a] >= x {
            break
        }

        // 交换
        h.Elems[i] = h.Elems[a]
        i = a
    }

    h.Elems[i] = x
    return ret
}

func (h *Heap) Display() {
    fmt.Printf("Size:%d,Elems:%#v\n", h.Size, h.Elems[0:h.Size])
}

func main() {
    h := NewHeap(100)
    h.Display()

    h.Push(3)
    h.Push(6)
    h.Push(7)
    h.Push(27)
    h.Push(1)
    h.Push(2)
    h.Push(3)
    h.Display()

    fmt.Println(h.Pop())
    h.Display()
    fmt.Println(h.Pop())
    h.Display()
    fmt.Println(h.Pop())
    h.Display()
    fmt.Println(h.Pop())
    h.Display()
    fmt.Println(h.Pop())
    h.Display()
}

左偏树

最小堆/最大堆如果两个堆进行合并,时间复杂度较高,左偏树是可合并的二叉堆,首先满足所有的堆的性质,其外,各种操作时间复杂度都是O(logN)。

左偏树的树节点需要保存的信息有:

1.左右子树节点编号
2.此节点到有空子结点的最短距离len(空子节点的节点,就是子节点数不足2个的节点)
3.自身权值


左偏就是每个节点的左子节点的len不小于右子节点的len(但并不代表左子节点数一定不小于右子节点数),那么可知左偏树中一个节点的距离就是右儿子距离+1(或没有右儿子),且左右子树都是左偏树。

合并树A和树B的操作方法如下: 

1.如果A或B有一个是空树,返回另一个。 
2.如果A的优先级比B低,交换A,B。(确保左堆根节点小于右堆根节点) 
3.递归处理,将B和A的右子树合并。(B,Right(A)递归处理) 
4.如果合并过后A的右儿子距离大于A的左儿子,交换A的左右儿子。(确保左儿子距离大于右儿子) 
5.更新A的距离。

左偏树合并操作合并的是两棵左偏树,对于堆的插入,就是合并一棵树和一个节点,对于堆的删除,就是合并根的两棵子树。

/*
    左偏树
*/
package main

import (
    "fmt"
)

type LeftistHeap struct {
    Root *Node
}

type Node struct {
    Data       int
    Distance   int
    LeftChild  *Node
    RightChild *Node
}

func New() *LeftistHeap {
    h := new(LeftistHeap)
    return h
}

func (n *Node) Dist() int {
    if n == nil {
        return -1 // 空节点距离为-1
    }
    return n.Distance
}

func (h *LeftistHeap) Push(data int) {
    newNode := new(Node)
    newNode.Data = data

    h.Root = h.Root.Merge(newNode)
}

func (h *LeftistHeap) Pop() int {
    if h.Root == nil {
        return -1 // pop完
    }

    data := h.Root.Data
    h.Root = h.Root.LeftChild.Merge(h.Root.RightChild)
    return data
}

// 合并两棵左偏树
func (A *Node) Merge(B *Node) *Node {

    // 一棵树为空返回另外一棵树
    if A == nil {
        return B
    }

    if B == nil {
        return A
    }

    leftHeap := A
    rightHeap := B

    // 使左堆做为合并后的根节点
    if A.Data > B.Data {
        leftHeap = B
        rightHeap = A
    }

    // 递归:左堆的右子树和右堆进行合并,作为左堆右子树
    leftHeap.RightChild = leftHeap.RightChild.Merge(rightHeap)

    // 树翻转左右,确保左儿子距离大于右子
    if leftHeap.RightChild.Dist() > leftHeap.LeftChild.Dist() {
        leftHeap.LeftChild, leftHeap.RightChild = leftHeap.RightChild, leftHeap.LeftChild
    }

    if leftHeap.RightChild == nil {
        leftHeap.Distance = 0
    } else {
        leftHeap.Distance = leftHeap.RightChild.Dist() + 1
    }

    return leftHeap
}

// 递归先序排序
func (n *Node) Display() {
    if n == nil {
        fmt.Println("null")
        return
    }
    fmt.Println(n.Data)
    fmt.Printf("Node:%d,Left child:", n.Data)
    if n.LeftChild != nil {
        n.LeftChild.Display()
    } else {
        fmt.Print("null")
    }
    fmt.Println()
    fmt.Printf("Node:%d,Right child:", n.Data)
    if n.RightChild != nil {
        n.RightChild.Display()
    } else {
        fmt.Print("null")
    }
    fmt.Println()
}

func (h *LeftistHeap) Display() {
    h.Root.Display()
}

func main() {
    n := New()
    n.Display()

    fmt.Println("---")

    n.Push(3)
    n.Push(1)
    n.Push(5)
    n.Push(8)

    n.Display()

    fmt.Println(n.Pop())
    fmt.Println(n.Pop())
    fmt.Println(n.Pop())
    fmt.Println(n.Pop())
    fmt.Println(n.Pop())
    fmt.Println(n.Pop())

}

转载请注明:http://www.lenggirl.com/algorithm/heap.html


有疑问加站长微信联系(非本文作者)

本文来自:简书

感谢作者:aside section._1OhGeD

查看原文:面试经典算法:优先队列,最大堆,堆排序,左偏树Golang实现

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

1320 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传