QOS是k8s中一种资源保护机制,其主要是针对不可压缩资源比如的内存的一种控制技术,比如在内存中其通过为不同的Pod和容器构造OOM评分,并且通过内核的策略的辅助,从而实现当节点内存资源不足的时候,内核可以按照策略的优先级,优先kill掉哪些优先级比较低(分值越高优先级越低)的Pod,今天来分析下背后的实现
1.关键基础特性
1.1 一切皆文件
在Linux中一切皆文件,控制CGroup本身也是通过配置文件进行的,这是我创建的一个内存Lmits为200M的Pod的容器的配置
# pwd
/sys/fs/cgroup
# cat ./memory/kubepods/pod8e172a5c-57f5-493d-a93d-b0b64bca26df/f2fe67dc90cbfd57d873cd8a81a972213822f3f146ec4458adbe54d868cf410c/memory.limit_in_bytes
209715200
1.2 内核内存配置
这里我们重点关注内存相关的两个配置:VMOvercommitMemory其值为1,表示运行分配所有的物理内存资源,注意不包括SWAP资源VMPanicOnOOM其值为0:表示当内存不足的时候触发oom_killer进行选择部分进程进行kill,QOS也是通过影响其kill流程来实现的
func setupKernelTunables(option KernelTunableBehavior) error {
desiredState := map[string]int{
utilsysctl.VMOvercommitMemory: utilsysctl.VMOvercommitMemoryAlways,
utilsysctl.VMPanicOnOOM: utilsysctl.VMPanicOnOOMInvokeOOMKiller,
utilsysctl.KernelPanic: utilsysctl.KernelPanicRebootTimeout,
utilsysctl.KernelPanicOnOops: utilsysctl.KernelPanicOnOopsAlways,
utilsysctl.RootMaxKeys: utilsysctl.RootMaxKeysSetting,
utilsysctl.RootMaxBytes: utilsysctl.RootMaxBytesSetting,
}
2.QOS打分机制与判定实现
QOS打分机制主要是根据Requests和limits里面的资源限制来进行类型判定与打分的,我们就来快速看下这部分的实现
2.1 根据容器判定QOS类型
2.1.1 构建容器列表
遍历所有的容器列表,注意这里会包含所有的初始化容器和业务容器
requests := v1.ResourceList{}
limits := v1.ResourceList{}
zeroQuantity := resource.MustParse("0")
isGuaranteed := true
allContainers := []v1.Container{}
allContainers = append(allContainers, pod.Spec.Containers...)
// 追加所有的初始化容器
allContainers = append(allContainers, pod.Spec.InitContainers...)
2.1.2 处理Requests和limits
这里遍历所有的Requests和Limits限制的资源,分别加入到不同的资源集合汇总,其中判定是不是Guaranteed主要是根据limits里面的资源是否包含CPU和内存两种资源,都包含才可能是Guaranteed
for _, container := range allContainers {
// process requests
for name, quantity := range container.Resources.Requests {
if !isSupportedQoSComputeResource(name) {
continue
}
if quantity.Cmp(zeroQuantity) == 1 {
delta := quantity.DeepCopy()
if _, exists := requests[name]; !exists {
requests[name] = delta
} else {
delta.Add(requests[name])
requests[name] = delta
}
}
}
// process limits
qosLimitsFound := sets.NewString()
for name, quantity := range container.Resources.Limits {
if !isSupportedQoSComputeResource(name) {
continue
}
if quantity.Cmp(zeroQuantity) == 1 {
qosLimitsFound.Insert(string(name))
delta := quantity.DeepCopy()
if _, exists := limits[name]; !exists {
limits[name] = delta
} else {
delta.Add(limits[name])
limits[name] = delta
}
}
}
if !qosLimitsFound.HasAll(string(v1.ResourceMemory), string(v1.ResourceCPU)) {
// 必须是全部包含cpu和内存限制
isGuaranteed = false
}
}
2.1.3 BestEffort
如果Pod里面的容器没有任何requests和limits的限制则就是BestEffort
if len(requests) == 0 && len(limits) == 0 {
return v1.PodQOSBestEffort
}
2.1.4 Guaranteed
要是Guaranteed必须是资源相等,并且限定的数量相同
// Check is requests match limits for all resources.
if isGuaranteed {
for name, req := range requests {
if lim, exists := limits[name]; !exists || lim.Cmp(req) != 0 {
isGuaranteed = false
break
}
}
}
if isGuaranteed &&
len(requests) == len(limits) {
return v1.PodQOSGuaranteed
}
2.1.5 Burstable
如果不是上面两种就是最后一种burstable了
return v1.PodQOSBurstable
2.2 QOS OOM打分机制
2.2.1 OOM打分机制
其中guaranteedOOMScoreAdj是-998其实这跟OOM实现有关系,一台node节点上主要是三部分组成:kubelet主进程、docker进程、业务容器进程,而OOM的打分里面-1000表示该进程不会被oom所kill, 那一个业务进程最少也就只能是-999因为你不能保证自己的业务永远不会出现问题,所以在QOS里面-999其实就是kubelet和docker进程所保留的,剩下的才能作为业务容器分配(分值越高越容易被kill)
// KubeletOOMScoreAdj is the OOM score adjustment for Kubelet
KubeletOOMScoreAdj int = -999
// DockerOOMScoreAdj is the OOM score adjustment for Docker
DockerOOMScoreAdj int = -999
// KubeProxyOOMScoreAdj is the OOM score adjustment for kube-proxy
KubeProxyOOMScoreAdj int = -999
guaranteedOOMScoreAdj int = -998
besteffortOOMScoreAdj int = 1000
2.2.2 关键Pod
关键Pod是一种特殊的存在,它可以是Burstable或者BestEffort类型的Pod,但是OOM打分却可以跟Guaranteed一样,这种类型的Pod主要包含三种:静态Pod、镜像Pod和高优先级Pod
if types.IsCriticalPod(pod) {
return guaranteedOOMScoreAdj
}
判定实现
func IsCriticalPod(pod *v1.Pod) bool {
if IsStaticPod(pod) {
return true
}
if IsMirrorPod(pod) {
return true
}
if pod.Spec.Priority != nil && IsCriticalPodBasedOnPriority(*pod.Spec.Priority) {
return true
}
return false
}
2.2.3 Guaranteed与BestEffort
这两种类型都有各自默认的值分别为Guaranteed(-998)和BestEffort(1000)
switch v1qos.GetPodQOS(pod) {
case v1.PodQOSGuaranteed:
// Guaranteed containers should be the last to get killed.
return guaranteedOOMScoreAdj
case v1.PodQOSBestEffort:
return besteffortOOMScoreAdj
}
2.2.4 Burstable
其中关键的一行就是:oomScoreAdjust := 1000 - (1000memoryRequest)/memoryCapacity,从这个计算里面可以看出,如果我们申请的资源越多,那么 (1000memoryRequest)/memoryCapacity这个里面计算出来的时机值就会越小,即最终结果就越大,其实也就表明如果我们占用的内存越少,则打分就越高,这类容器就相对比较容易被kill
memoryRequest := container.Resources.Requests.Memory().Value()
oomScoreAdjust := 1000 - (1000*memoryRequest)/memoryCapacity
// A guaranteed pod using 100% of memory can have an OOM score of 10.
Ensure that burstable pods have a higher OOM score adjustment.
if int(oomScoreAdjust) < (1000 + guaranteedOOMScoreAdj) {
return (1000 + guaranteedOOMScoreAdj)
}
// Give burstable pods a higher chance of survival over besteffort pods.
if int(oomScoreAdjust) == besteffortOOMScoreAdj {
return int(oomScoreAdjust - 1)
}
return int(oomScoreAdjust)
好了今天就到这里,看之前还很懵逼,看完有种豁然开朗的感觉,还是那句话说的对,源码面前了无秘密,加油
k8s源码阅读电子书地址: https://www.yuque.com/baxiaoshi/tyado3
微信号:baxiaoshi2020关注公告号阅读更多源码分析文章
更多文章关注 www.sreguide.com
本文由博客一文多发平台 OpenWrite 发布!
有疑问加站长微信联系(非本文作者)